conv_cudnn_op.cu.cc 23.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

Y
Yi Wang 已提交
15 16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
18
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
Y
Yi Wang 已提交
19 20 21
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
22
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
K
Kexin Zhao 已提交
23
#include "paddle/fluid/platform/float16.h"
24
#include "paddle/fluid/platform/profiler.h"
武毅 已提交
25

Y
Yu Yang 已提交
26
DEFINE_bool(cudnn_deterministic, false,
C
chengduoZH 已提交
27 28
            "Whether allow using an autotuning algorithm for convolution "
            "operator. The autotuning algorithm may be non-deterministic. If "
Y
Yu Yang 已提交
29
            "true, the algorithm is deterministic.");
30 31
DEFINE_uint64(conv_workspace_size_limit,
              paddle::platform::kDefaultConvWorkspaceSizeLimitMB,
32 33 34 35
              "cuDNN convolution workspace limit in MB unit.");
DEFINE_bool(cudnn_exhaustive_search, false,
            "Whether enable exhaustive search for cuDNN convolution or "
            "not, defalut is False.");
C
chengduoZH 已提交
36

武毅 已提交
37 38 39 40 41 42 43 44
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
K
update  
Kexin Zhao 已提交
45 46
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
47
using framework::AlgorithmsCache;
武毅 已提交
48 49

template <typename T>
50
class CUDNNConvOpKernel : public framework::OpKernel<T> {
武毅 已提交
51 52
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
53
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
武毅 已提交
54
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
55
                   "It must use CUDAPlace.");
武毅 已提交
56 57 58 59 60 61 62 63
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
64 65
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
66 67
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
武毅 已提交
68 69 70 71 72 73 74 75 76 77 78

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
79 80 81 82 83 84 85
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
86
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
87 88 89
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
90
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
91 92 93
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
94

C
chengduoZH 已提交
95 96 97 98 99 100
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
101 102

    int input_channels = input->dims()[1];
武毅 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }
    int output_channels = filter->dims()[0];
    int output_height, output_width, output_depth;
    if (output->dims().size() == 5) {
      output_depth = output->dims()[2];
      output_height = output->dims()[3];
      output_width = output->dims()[4];
    } else {
      output_depth = 1;
      output_height = output->dims()[2];
      output_width = output->dims()[3];
    }
武毅 已提交
124

武毅 已提交
125 126
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
武毅 已提交
127
    int group_offset_out =
武毅 已提交
128
        output_channels / groups * output_height * output_width * output_depth;
武毅 已提交
129 130 131
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
132
    size_t workspace_size_limit = 0;
133 134
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
135
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
136 137
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
武毅 已提交
138
    }
139

武毅 已提交
140 141
    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
142
    bool half_float = false;
143

144 145 146 147 148 149 150 151 152
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Tensor core is supported since the volta GPU and
    // is only enabled when input and filter data are float16
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      // Currently tensor core is only enabled using this algo
K
Kexin Zhao 已提交
153
      algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
154
      half_float = true;
M
minqiyang 已提交
155
      VLOG(5) << "use cudnn_tensor_op_math";
K
Kexin Zhao 已提交
156
    } else {
157 158
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
M
minqiyang 已提交
159
      VLOG(5) << "NOT use cudnn_tensor_op_math";
K
Kexin Zhao 已提交
160
    }
161
#endif
K
Kexin Zhao 已提交
162

163 164
    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
165 166 167 168 169 170 171 172 173
    auto x_dims = framework::vectorize(input->dims());
    auto f_dims = framework::vectorize(filter->dims());
    if ((!exhaustive_search) && (!half_float)) {
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
          handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
          workspace_size_limit, &algo));
      VLOG(3) << "cuDNN forward algo " << algo;
    } else if (exhaustive_search && (!half_float)) {
174 175
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>& algo_cache =
          ctx.GetKernelConfig<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>(0);
176

177
      algo = algo_cache.GetAlgorithm(
178 179 180 181
          x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
            int returned_algo_count;
            std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
                fwd_perf_stat;
182

183 184 185 186 187 188 189 190 191 192
            auto cudnn_find_func = [&](void* cudnn_workspace) {
              CUDNN_ENFORCE(
                  platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                      handle, cudnn_input_desc, input_data, cudnn_filter_desc,
                      filter_data, cudnn_conv_desc, cudnn_output_desc,
                      output_data, kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                      fwd_perf_stat.data(), cudnn_workspace,
                      workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

            VLOG(3) << "Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = fwd_perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return fwd_perf_stat[0].algo;
          });
      VLOG(3) << "choose algo " << algo;
    } else {
      PADDLE_ENFORCE(half_float,
                     "cuDNN exhaustive search doesn't support half float.");
    }

武毅 已提交
208
    // get workspace size able to allocate
W
Wu Yi 已提交
209
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
武毅 已提交
210 211
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, algo, &workspace_size_in_bytes));
K
Kexin Zhao 已提交
212 213 214 215 216
    // It is possible for float16 on Volta GPU to allocate more memory than
    // the limit because the algo is overrided to use tensor core.
    PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
                      "workspace_size to be allocated exceeds the limit");

217
    // Allocate on GPU memory
218 219 220 221 222 223 224
    Tensor cudnn_workspace =
        ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
            framework::make_ddim(
                {static_cast<int64_t>(workspace_size_in_bytes)}),
            dev_ctx);
    void* cudnn_workspace_ptr =
        static_cast<void*>(cudnn_workspace.data<int8_t>());
武毅 已提交
225
    // ------------------- cudnn conv forward ---------------------
K
update  
Kexin Zhao 已提交
226
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
227
    for (int i = 0; i < groups; i++) {
228 229 230 231 232
      CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
          handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
          cudnn_filter_desc, filter_data + i * group_offset_filter,
          cudnn_conv_desc, algo, cudnn_workspace_ptr, workspace_size_in_bytes,
          &beta, cudnn_output_desc, output_data + i * group_offset_out));
武毅 已提交
233 234 235 236 237
    }
  }
};

template <typename T>
238
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
武毅 已提交
239 240
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
241
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
武毅 已提交
242
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
243
                   "It must use CUDAPlace.");
武毅 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
258 259
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
260 261 262 263 264 265 266
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    if (exhaustive_search && FLAGS_cudnn_deterministic) {
      PADDLE_THROW(
          "Cann't set exhaustive_search True and "
          "FLAGS_cudnn_deterministic True at same time.");
    }
武毅 已提交
267 268 269 270 271 272 273 274 275

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_grad_desc;

    ScopedFilterDescriptor filter_desc;
    ScopedFilterDescriptor filter_grad_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
276 277 278 279 280 281 282
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
283
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
284 285 286
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
287
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
288 289 290
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
291

C
chengduoZH 已提交
292 293
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
武毅 已提交
294
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
C
chengduoZH 已提交
295 296 297 298
        output_grad_desc.descriptor<T>(
            layout, framework::vectorize2int(output_grad->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
299

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Enable Tensor Core for cudnn backward
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      VLOG(5) << "use cudnn_tensor_op_math for backward";
    } else {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
      VLOG(5) << "NOT use cudnn_tensor_op_math for backward";
    }
#endif

武毅 已提交
315
    int input_channels = input->dims()[1];
武毅 已提交
316 317 318 319 320 321 322 323 324 325 326
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }

武毅 已提交
327
    int output_grad_channels = filter->dims()[0];
武毅 已提交
328 329 330 331 332 333 334 335 336 337
    int output_grad_height, output_grad_width, output_grad_depth;
    if (input->dims().size() == 5) {
      output_grad_depth = output_grad->dims()[2];
      output_grad_height = output_grad->dims()[3];
      output_grad_width = output_grad->dims()[4];
    } else {
      output_grad_depth = 1;
      output_grad_height = output_grad->dims()[2];
      output_grad_width = output_grad->dims()[3];
    }
武毅 已提交
338

武毅 已提交
339 340 341 342
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
    int group_offset_out = output_grad_channels / groups * output_grad_height *
                           output_grad_width * output_grad_depth;
武毅 已提交
343 344 345 346 347
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn backward algorithm ---------------------
    cudnnConvolutionBwdDataAlgo_t data_algo;
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
    size_t workspace_size_in_bytes = 0, tmp_size = 0;
348
    size_t workspace_size_limit = 0;
349 350
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
351
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
352 353
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
武毅 已提交
354 355
    }

356 357 358 359 360 361 362 363 364 365 366
    Tensor cudnn_workspace;
    void* cudnn_workspace_ptr = nullptr;
    if ((input_data || filter_data) && exhaustive_search) {
      cudnn_workspace =
          ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
              framework::make_ddim(
                  {static_cast<int64_t>(workspace_size_limit)}),
              dev_ctx);
      cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());
    }

367 368
    auto x_dims = framework::vectorize(input->dims());
    auto f_dims = framework::vectorize(filter->dims());
Q
QI JUN 已提交
369
    auto handle = dev_ctx.cudnn_handle();
武毅 已提交
370
    if (input_grad) {
371 372
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
      if (exhaustive_search) {
373 374 375 376 377
        AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>& data_algo_cache =
            ctx.GetKernelConfig<AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>(
                0);

        data_algo = data_algo_cache.GetAlgorithm(
378 379 380 381 382
            x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
              int returned_algo_count;
              std::array<cudnnConvolutionBwdDataAlgoPerf_t,
                         kNUM_CUDNN_BWD_DATA_ALGS>
                  data_perf_stat;
383 384 385 386 387 388 389 390 391

              CUDNN_ENFORCE(platform::dynload::
                                cudnnFindConvolutionBackwardDataAlgorithmEx(
                                    handle, cudnn_filter_desc, filter_data,
                                    cudnn_output_grad_desc, output_grad_data,
                                    cudnn_conv_desc, cudnn_input_desc,
                                    input_grad_data, kNUM_CUDNN_BWD_DATA_ALGS,
                                    &returned_algo_count, data_perf_stat.data(),
                                    cudnn_workspace_ptr, workspace_size_limit));
392 393 394 395 396 397 398 399 400 401 402 403 404

              VLOG(3) << "Perf result: (algo: stat, time, memory)";
              for (int i = 0; i < returned_algo_count; ++i) {
                const auto& stat = data_perf_stat[i];
                VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                        << " " << stat.memory;
              }
              return data_perf_stat[0].algo;
            });
        VLOG(3) << "cuDNN backward data algo " << data_algo;
      } else if (FLAGS_cudnn_deterministic) {
        data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      } else {
W
Wu Yi 已提交
405
        CUDNN_ENFORCE(
C
chengduoZH 已提交
406 407 408 409 410 411 412 413 414 415 416 417
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                handle, cudnn_filter_desc,
                // dyDesc: Handle to the previously initialized input
                // differential
                // tensor descriptor.
                cudnn_output_grad_desc, cudnn_conv_desc,
                // dxDesc: Handle to the previously initialized output tensor
                // descriptor.
                cudnn_input_desc,
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &data_algo));
      }
W
Wu Yi 已提交
418
      CUDNN_ENFORCE(
武毅 已提交
419 420
          platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
              handle, cudnn_filter_desc, cudnn_output_grad_desc,
武毅 已提交
421
              cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
武毅 已提交
422 423 424 425
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }

    if (filter_grad) {
426 427
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
      if (exhaustive_search) {
428 429 430 431 432
        AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>& f_algo_cache =
            ctx.GetKernelConfig<
                AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>(1);

        filter_algo = f_algo_cache.GetAlgorithm(
433 434 435 436 437
            x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
              int returned_algo_count;
              std::array<cudnnConvolutionBwdFilterAlgoPerf_t,
                         kNUM_CUDNN_BWD_FILTER_ALGS>
                  filter_perf_stat;
438 439 440 441 442 443 444 445 446 447

              CUDNN_ENFORCE(
                  platform::dynload::
                      cudnnFindConvolutionBackwardFilterAlgorithmEx(
                          handle, cudnn_input_desc, input_data,
                          cudnn_output_grad_desc, output_grad_data,
                          cudnn_conv_desc, cudnn_filter_desc, filter_grad_data,
                          kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
                          filter_perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
448 449 450 451 452 453
              return filter_perf_stat[0].algo;
            });
        VLOG(3) << "cuDNN backward filter algo " << filter_algo;
      } else if (FLAGS_cudnn_deterministic) {
        filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
      } else {
W
Wu Yi 已提交
454
        CUDNN_ENFORCE(
C
chengduoZH 已提交
455 456 457 458 459 460
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                handle, cudnn_input_desc, cudnn_output_grad_desc,
                cudnn_conv_desc, cudnn_filter_desc,
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &filter_algo));
      }
W
Wu Yi 已提交
461
      CUDNN_ENFORCE(
武毅 已提交
462 463 464 465 466
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &tmp_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
467

468 469 470 471 472 473 474 475 476 477
    // ------------------- cudnn conv workspace ---------------------
    if (!cudnn_workspace_ptr) {
      cudnn_workspace =
          ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
              framework::make_ddim(
                  {static_cast<int64_t>(workspace_size_in_bytes)}),
              dev_ctx);
      cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());
    }

武毅 已提交
478
    // ------------------- cudnn conv backward data ---------------------
K
update  
Kexin Zhao 已提交
479
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
480 481
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
482 483
      // Because beta is zero, it is unnecessary to reset input_grad.

武毅 已提交
484
      for (int i = 0; i < groups; i++) {
485 486 487 488 489 490
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
            handle, &alpha, cudnn_filter_desc,
            filter_data + i * group_offset_filter, cudnn_output_grad_desc,
            output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
            cudnn_workspace_ptr, workspace_size_in_bytes, &beta,
            cudnn_input_desc, input_grad_data + i * group_offset_in));
武毅 已提交
491 492 493 494 495
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
496
      // Because beta is zero, it is unnecessary to reset filter_grad.
武毅 已提交
497
      for (int i = 0; i < groups; i++) {
498 499 500 501 502 503
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
            handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
            cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
            cudnn_conv_desc, filter_algo, cudnn_workspace_ptr,
            workspace_size_in_bytes, &beta, cudnn_filter_desc,
            filter_grad_data + i * group_offset_filter));
武毅 已提交
504 505 506 507 508 509 510 511
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

K
Kexin Zhao 已提交
512 513
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
514
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
515
                   paddle::operators::CUDNNConvOpKernel<double>,
K
Kexin Zhao 已提交
516
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
517
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
518
                   paddle::operators::CUDNNConvGradOpKernel<float>,
C
chengduo 已提交
519 520
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
521

K
Kexin Zhao 已提交
522
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
523
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
524 525
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
526
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
527
                   paddle::operators::CUDNNConvGradOpKernel<float>,
528
                   paddle::operators::CUDNNConvGradOpKernel<double>);