conv_cudnn_op.cu.cc 24.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

Y
Yi Wang 已提交
15 16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
18
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
Y
Yi Wang 已提交
19 20 21
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
22
#include "paddle/fluid/platform/float16.h"
23
#include "paddle/fluid/platform/profiler.h"
武毅 已提交
24

Y
Yu Yang 已提交
25
DEFINE_bool(cudnn_deterministic, false,
C
chengduoZH 已提交
26 27
            "Whether allow using an autotuning algorithm for convolution "
            "operator. The autotuning algorithm may be non-deterministic. If "
Y
Yu Yang 已提交
28
            "true, the algorithm is deterministic.");
29 30 31 32 33
DEFINE_uint64(conv_workspace_size_limit, 4096,
              "cuDNN convolution workspace limit in MB unit.");
DEFINE_bool(cudnn_exhaustive_search, false,
            "Whether enable exhaustive search for cuDNN convolution or "
            "not, defalut is False.");
C
chengduoZH 已提交
34

武毅 已提交
35 36 37 38 39 40 41 42
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
K
update  
Kexin Zhao 已提交
43 44
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
武毅 已提交
45 46

template <typename T>
47
class CUDNNConvOpKernel : public framework::OpKernel<T> {
武毅 已提交
48 49
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
50
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
武毅 已提交
51
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
52
                   "It must use CUDAPlace.");
武毅 已提交
53 54 55 56 57 58 59 60
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
61 62
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
63 64
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
武毅 已提交
65 66 67 68 69 70 71 72 73 74 75

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
76 77 78 79 80 81 82
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
83
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
84 85 86
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
87
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
88 89 90
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
91

C
chengduoZH 已提交
92 93 94 95 96 97
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
98 99

    int input_channels = input->dims()[1];
武毅 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }
    int output_channels = filter->dims()[0];
    int output_height, output_width, output_depth;
    if (output->dims().size() == 5) {
      output_depth = output->dims()[2];
      output_height = output->dims()[3];
      output_width = output->dims()[4];
    } else {
      output_depth = 1;
      output_height = output->dims()[2];
      output_width = output->dims()[3];
    }
武毅 已提交
121

武毅 已提交
122 123
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
武毅 已提交
124
    int group_offset_out =
武毅 已提交
125
        output_channels / groups * output_height * output_width * output_depth;
武毅 已提交
126 127 128 129
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
130 131 132 133 134
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
          std::max(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
武毅 已提交
135
    }
136

武毅 已提交
137 138
    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
Q
QI JUN 已提交
139
    auto handle = dev_ctx.cudnn_handle();
140
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
141

142
    bool half_float = false;
143 144 145 146 147 148 149 150 151
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Tensor core is supported since the volta GPU and
    // is only enabled when input and filter data are float16
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      // Currently tensor core is only enabled using this algo
K
Kexin Zhao 已提交
152
      algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
153
      half_float = true;
M
minqiyang 已提交
154
      VLOG(5) << "use cudnn_tensor_op_math";
K
Kexin Zhao 已提交
155
    } else {
156 157
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
M
minqiyang 已提交
158
      VLOG(5) << "NOT use cudnn_tensor_op_math";
K
Kexin Zhao 已提交
159
    }
160
#endif
K
Kexin Zhao 已提交
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    auto x_dims = framework::vectorize(input->dims());
    auto f_dims = framework::vectorize(filter->dims());
    if ((!exhaustive_search) && (!half_float)) {
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
          handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
          workspace_size_limit, &algo));
      VLOG(3) << "cuDNN forward algo " << algo;
    } else if (exhaustive_search && (!half_float)) {
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>* algo_cache = nullptr;
      if (ctx.scope().FindVar(kCUDNNFwdAlgoCache)) {
        algo_cache =
            ctx.scope()
                .FindVar(kCUDNNFwdAlgoCache)
                ->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
      } else {
        algo_cache =
            const_cast<framework::Scope&>(ctx.scope())
                .Var(kCUDNNFwdAlgoCache)
                ->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
      }
      algo = algo_cache->GetAlgorithm(
          x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
            int returned_algo_count;
            std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
                fwd_perf_stat;
188 189 190 191 192 193 194 195 196 197
            auto cudnn_find_func = [&](void* cudnn_workspace) {
              CUDNN_ENFORCE(
                  platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                      handle, cudnn_input_desc, input_data, cudnn_filter_desc,
                      filter_data, cudnn_conv_desc, cudnn_output_desc,
                      output_data, kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                      fwd_perf_stat.data(), cudnn_workspace,
                      workspace_size_limit));
            };
            workspace_handle.RunFunc(cudnn_find_func, workspace_size_limit);
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

            VLOG(3) << "Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = fwd_perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return fwd_perf_stat[0].algo;
          });
      VLOG(3) << "choose algo " << algo;
    } else {
      PADDLE_ENFORCE(half_float,
                     "cuDNN exhaustive search doesn't support half float.");
    }

武毅 已提交
213
    // get workspace size able to allocate
W
Wu Yi 已提交
214
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
武毅 已提交
215 216
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, algo, &workspace_size_in_bytes));
K
Kexin Zhao 已提交
217 218 219 220 221
    // It is possible for float16 on Volta GPU to allocate more memory than
    // the limit because the algo is overrided to use tensor core.
    PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
                      "workspace_size to be allocated exceeds the limit");

武毅 已提交
222
    // ------------------- cudnn conv forward ---------------------
K
update  
Kexin Zhao 已提交
223
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
224
    for (int i = 0; i < groups; i++) {
225 226 227 228 229 230 231 232
      auto cudnn_func = [&](void* cudnn_workspace) {
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
            handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
            cudnn_filter_desc, filter_data + i * group_offset_filter,
            cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes,
            &beta, cudnn_output_desc, output_data + i * group_offset_out));
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
武毅 已提交
233 234 235 236 237
    }
  }
};

template <typename T>
238
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
武毅 已提交
239 240
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
241
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
武毅 已提交
242
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
243
                   "It must use CUDAPlace.");
武毅 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
258 259
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
260 261 262 263 264 265 266
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    if (exhaustive_search && FLAGS_cudnn_deterministic) {
      PADDLE_THROW(
          "Cann't set exhaustive_search True and "
          "FLAGS_cudnn_deterministic True at same time.");
    }
武毅 已提交
267 268 269 270 271 272 273 274 275

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_grad_desc;

    ScopedFilterDescriptor filter_desc;
    ScopedFilterDescriptor filter_grad_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
276 277 278 279 280 281 282
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
283
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
284 285 286
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
287
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
288 289 290
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
291

C
chengduoZH 已提交
292 293
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
武毅 已提交
294
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
C
chengduoZH 已提交
295 296 297 298
        output_grad_desc.descriptor<T>(
            layout, framework::vectorize2int(output_grad->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
299

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Enable Tensor Core for cudnn backward
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      VLOG(5) << "use cudnn_tensor_op_math for backward";
    } else {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
      VLOG(5) << "NOT use cudnn_tensor_op_math for backward";
    }
#endif

武毅 已提交
315
    int input_channels = input->dims()[1];
武毅 已提交
316 317 318 319 320 321 322 323 324 325 326
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }

武毅 已提交
327
    int output_grad_channels = filter->dims()[0];
武毅 已提交
328 329 330 331 332 333 334 335 336 337
    int output_grad_height, output_grad_width, output_grad_depth;
    if (input->dims().size() == 5) {
      output_grad_depth = output_grad->dims()[2];
      output_grad_height = output_grad->dims()[3];
      output_grad_width = output_grad->dims()[4];
    } else {
      output_grad_depth = 1;
      output_grad_height = output_grad->dims()[2];
      output_grad_width = output_grad->dims()[3];
    }
武毅 已提交
338

武毅 已提交
339 340 341 342
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
    int group_offset_out = output_grad_channels / groups * output_grad_height *
                           output_grad_width * output_grad_depth;
武毅 已提交
343 344 345 346 347 348
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn backward algorithm ---------------------
    cudnnConvolutionBwdDataAlgo_t data_algo;
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
    size_t workspace_size_in_bytes = 0, tmp_size = 0;
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
349 350 351 352 353
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
          std::max(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
武毅 已提交
354 355
    }

356 357
    auto x_dims = framework::vectorize(input->dims());
    auto f_dims = framework::vectorize(filter->dims());
Q
QI JUN 已提交
358
    auto handle = dev_ctx.cudnn_handle();
359
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
武毅 已提交
360
    if (input_grad) {
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
      if (exhaustive_search) {
        AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>* data_algo_cache;
        if (ctx.scope().FindVar(kCUDNNBwdDataAlgoCache)) {
          data_algo_cache =
              ctx.scope()
                  .FindVar(kCUDNNBwdDataAlgoCache)
                  ->GetMutable<
                      AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>();
        } else {
          data_algo_cache =
              const_cast<framework::Scope&>(ctx.scope())
                  .Var(kCUDNNBwdDataAlgoCache)
                  ->GetMutable<
                      AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>();
        }
        data_algo = data_algo_cache->GetAlgorithm(
            x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
              int returned_algo_count;
              std::array<cudnnConvolutionBwdDataAlgoPerf_t,
                         kNUM_CUDNN_BWD_DATA_ALGS>
                  data_perf_stat;
383 384 385 386 387 388 389 390 391 392 393 394 395
              auto cudnn_find_bd_data_func = [&](void* cudnn_workspace) {
                CUDNN_ENFORCE(
                    platform::dynload::
                        cudnnFindConvolutionBackwardDataAlgorithmEx(
                            handle, cudnn_filter_desc, filter_data,
                            cudnn_output_grad_desc, output_grad_data,
                            cudnn_conv_desc, cudnn_input_desc, input_grad_data,
                            kNUM_CUDNN_BWD_DATA_ALGS, &returned_algo_count,
                            data_perf_stat.data(), cudnn_workspace,
                            workspace_size_limit));
              };
              workspace_handle.RunFunc(cudnn_find_bd_data_func,
                                       workspace_size_limit);
396 397 398 399 400 401 402 403 404 405 406 407 408

              VLOG(3) << "Perf result: (algo: stat, time, memory)";
              for (int i = 0; i < returned_algo_count; ++i) {
                const auto& stat = data_perf_stat[i];
                VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                        << " " << stat.memory;
              }
              return data_perf_stat[0].algo;
            });
        VLOG(3) << "cuDNN backward data algo " << data_algo;
      } else if (FLAGS_cudnn_deterministic) {
        data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      } else {
W
Wu Yi 已提交
409
        CUDNN_ENFORCE(
C
chengduoZH 已提交
410 411 412 413 414 415 416 417 418 419 420 421
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                handle, cudnn_filter_desc,
                // dyDesc: Handle to the previously initialized input
                // differential
                // tensor descriptor.
                cudnn_output_grad_desc, cudnn_conv_desc,
                // dxDesc: Handle to the previously initialized output tensor
                // descriptor.
                cudnn_input_desc,
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &data_algo));
      }
W
Wu Yi 已提交
422
      CUDNN_ENFORCE(
武毅 已提交
423 424
          platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
              handle, cudnn_filter_desc, cudnn_output_grad_desc,
武毅 已提交
425
              cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
武毅 已提交
426 427 428 429
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }

    if (filter_grad) {
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
      if (exhaustive_search) {
        AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>* f_algo_cache;
        if (ctx.scope().FindVar(kCUDNNBwdFilterAlgoCache)) {
          f_algo_cache =
              ctx.scope()
                  .FindVar(kCUDNNBwdFilterAlgoCache)
                  ->GetMutable<
                      AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>();
        } else {
          f_algo_cache =
              const_cast<framework::Scope&>(ctx.scope())
                  .Var(kCUDNNBwdFilterAlgoCache)
                  ->GetMutable<
                      AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>();
        }
        filter_algo = f_algo_cache->GetAlgorithm(
            x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
              int returned_algo_count;
              std::array<cudnnConvolutionBwdFilterAlgoPerf_t,
                         kNUM_CUDNN_BWD_FILTER_ALGS>
                  filter_perf_stat;
452 453 454 455 456 457 458 459 460 461 462 463 464
              auto cudnn_find_bd_f_func = [&](void* cudnn_workspace) {
                CUDNN_ENFORCE(
                    platform::dynload::
                        cudnnFindConvolutionBackwardFilterAlgorithmEx(
                            handle, cudnn_input_desc, input_data,
                            cudnn_output_grad_desc, output_grad_data,
                            cudnn_conv_desc, cudnn_filter_desc,
                            filter_grad_data, kNUM_CUDNN_BWD_FILTER_ALGS,
                            &returned_algo_count, filter_perf_stat.data(),
                            cudnn_workspace, workspace_size_limit));
              };
              workspace_handle.RunFunc(cudnn_find_bd_f_func,
                                       workspace_size_limit);
465 466 467 468 469 470
              return filter_perf_stat[0].algo;
            });
        VLOG(3) << "cuDNN backward filter algo " << filter_algo;
      } else if (FLAGS_cudnn_deterministic) {
        filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
      } else {
W
Wu Yi 已提交
471
        CUDNN_ENFORCE(
C
chengduoZH 已提交
472 473 474 475 476 477
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                handle, cudnn_input_desc, cudnn_output_grad_desc,
                cudnn_conv_desc, cudnn_filter_desc,
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &filter_algo));
      }
W
Wu Yi 已提交
478
      CUDNN_ENFORCE(
武毅 已提交
479 480 481 482 483
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &tmp_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
484

武毅 已提交
485
    // ------------------- cudnn conv backward data ---------------------
K
update  
Kexin Zhao 已提交
486
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
487 488
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
489 490
      // Because beta is zero, it is unnecessary to reset input_grad.

武毅 已提交
491
      for (int i = 0; i < groups; i++) {
492 493 494 495 496 497 498 499 500
        auto cudnn_func = [&](void* cudnn_workspace) {
          CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
              handle, &alpha, cudnn_filter_desc,
              filter_data + i * group_offset_filter, cudnn_output_grad_desc,
              output_grad_data + i * group_offset_out, cudnn_conv_desc,
              data_algo, cudnn_workspace, workspace_size_in_bytes, &beta,
              cudnn_input_desc, input_grad_data + i * group_offset_in));
        };
        workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
武毅 已提交
501 502 503 504 505
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
506
      // Because beta is zero, it is unnecessary to reset filter_grad.
武毅 已提交
507
      for (int i = 0; i < groups; i++) {
508 509 510 511 512 513 514 515 516
        auto cudnn_func = [&](void* cudnn_workspace) {
          CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
              handle, &alpha, cudnn_input_desc,
              input_data + i * group_offset_in, cudnn_output_grad_desc,
              output_grad_data + i * group_offset_out, cudnn_conv_desc,
              filter_algo, cudnn_workspace, workspace_size_in_bytes, &beta,
              cudnn_filter_desc, filter_grad_data + i * group_offset_filter));
        };
        workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
武毅 已提交
517 518 519 520 521 522 523 524
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

K
Kexin Zhao 已提交
525 526
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
527
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
528
                   paddle::operators::CUDNNConvOpKernel<double>,
K
Kexin Zhao 已提交
529
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
530
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
531
                   paddle::operators::CUDNNConvGradOpKernel<float>,
C
chengduo 已提交
532 533
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
534

K
Kexin Zhao 已提交
535
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
536
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
537 538
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
539
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
540
                   paddle::operators::CUDNNConvGradOpKernel<float>,
541
                   paddle::operators::CUDNNConvGradOpKernel<double>);