tracker.py 18.1 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import cv2
import glob
import paddle
import numpy as np

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
G
George Ni 已提交
27
from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
G
George Ni 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
from ppdet.modeling.mot.utils import Timer, load_det_results
from ppdet.modeling.mot import visualization as mot_vis

from ppdet.metrics import Metric, MOTMetric
import ppdet.utils.stats as stats

from .callbacks import Callback, ComposeCallback

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['Tracker']


class Tracker(object):
    def __init__(self, cfg, mode='eval'):
        self.cfg = cfg
        assert mode.lower() in ['test', 'eval'], \
                "mode should be 'test' or 'eval'"
        self.mode = mode.lower()
        self.optimizer = None

        # build MOT data loader
        self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]

        # build model
        self.model = create(cfg.architecture)

        self.status = {}
        self.start_epoch = 0

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        self._callbacks = []
        self._compose_callback = None

    def _init_metrics(self):
        if self.mode in ['test']:
            self._metrics = []
            return

        if self.cfg.metric == 'MOT':
            self._metrics = [MOTMetric(), ]
        else:
            logger.warn("Metric not support for metric type {}".format(
                self.cfg.metric))
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
        callbacks = [h for h in list(callbacks) if h is not None]
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights_jde(self, weights):
        load_weight(self.model, weights, self.optimizer)

    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
106 107 108 109
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights, self.optimizer)
G
George Ni 已提交
110 111 112 113 114

    def _eval_seq_jde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
115 116
                      frame_rate=30,
                      draw_threshold=0):
G
George Ni 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        tracker = self.model.tracker
        tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)

        timer = Timer()
        results = []
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))

            # forward
            timer.tic()
135 136
            pred_dets, pred_embs = self.model(data)
            online_targets = self.model.tracker.update(pred_dets, pred_embs)
G
George Ni 已提交
137 138

            online_tlwhs, online_ids = [], []
G
George Ni 已提交
139
            online_scores = []
G
George Ni 已提交
140 141 142
            for t in online_targets:
                tlwh = t.tlwh
                tid = t.track_id
G
George Ni 已提交
143
                tscore = t.score
144
                if tscore < draw_threshold: continue
G
George Ni 已提交
145 146 147 148
                vertical = tlwh[2] / tlwh[3] > 1.6
                if tlwh[2] * tlwh[3] > tracker.min_box_area and not vertical:
                    online_tlwhs.append(tlwh)
                    online_ids.append(tid)
G
George Ni 已提交
149
                    online_scores.append(tscore)
G
George Ni 已提交
150 151 152
            timer.toc()

            # save results
G
George Ni 已提交
153 154
            results.append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
G
George Ni 已提交
155
            self.save_results(data, frame_id, online_ids, online_tlwhs,
G
George Ni 已提交
156 157
                              online_scores, timer.average_time, show_image,
                              save_dir)
G
George Ni 已提交
158 159 160 161 162 163 164 165 166
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def _eval_seq_sde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
                      frame_rate=30,
167 168
                      det_file='',
                      draw_threshold=0):
G
George Ni 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        tracker = self.model.tracker
        use_detector = False if not self.model.detector else True

        timer = Timer()
        results = []
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
        self.model.reid.eval()
        if not use_detector:
            dets_list = load_det_results(det_file, len(dataloader))
            logger.info('Finish loading detection results file {}.'.format(
                det_file))

        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))

G
George Ni 已提交
191 192 193 194
            ori_image = data['ori_image']
            input_shape = data['image'].shape[2:]
            im_shape = data['im_shape']
            scale_factor = data['scale_factor']
G
George Ni 已提交
195 196 197 198 199
            timer.tic()
            if not use_detector:
                dets = dets_list[frame_id]
                bbox_tlwh = paddle.to_tensor(dets['bbox'], dtype='float32')
                pred_scores = paddle.to_tensor(dets['score'], dtype='float32')
200
                if pred_scores < draw_threshold: continue
G
George Ni 已提交
201 202 203 204 205 206 207 208
                if bbox_tlwh.shape[0] > 0:
                    pred_bboxes = paddle.concat(
                        (bbox_tlwh[:, 0:2],
                         bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]),
                        axis=1)
                else:
                    pred_bboxes = []
                    pred_scores = []
G
George Ni 已提交
209 210 211 212 213 214 215 216 217
            else:
                outs = self.model.detector(data)
                if outs['bbox_num'] > 0:
                    pred_bboxes = scale_coords(outs['bbox'][:, 2:], input_shape,
                                               im_shape, scale_factor)
                    pred_scores = outs['bbox'][:, 1:2]
                else:
                    pred_bboxes = []
                    pred_scores = []
G
George Ni 已提交
218

G
George Ni 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
            pred_bboxes = clip_box(pred_bboxes, input_shape, im_shape,
                                   scale_factor)
            bbox_tlwh = paddle.concat(
                (pred_bboxes[:, 0:2],
                 pred_bboxes[:, 2:4] - pred_bboxes[:, 0:2] + 1),
                axis=1)

            crops, pred_scores = get_crops(
                pred_bboxes, ori_image, pred_scores, w=64, h=192)
            crops = paddle.to_tensor(crops)
            pred_scores = paddle.to_tensor(pred_scores)

            data.update({'crops': crops})
            features = self.model(data)
            features = features.numpy()
            detections = [
                Detection(tlwh, score, feat)
                for tlwh, score, feat in zip(bbox_tlwh, pred_scores, features)
            ]
238 239
            self.model.tracker.predict()
            online_targets = self.model.tracker.update(detections)
G
George Ni 已提交
240 241

            online_tlwhs = []
G
George Ni 已提交
242
            online_scores = []
G
George Ni 已提交
243 244 245 246
            online_ids = []
            for track in online_targets:
                if not track.is_confirmed() or track.time_since_update > 1:
                    continue
G
George Ni 已提交
247 248 249
                online_tlwhs.append(track.to_tlwh())
                online_scores.append(1.0)
                online_ids.append(track.track_id)
G
George Ni 已提交
250 251 252
            timer.toc()

            # save results
G
George Ni 已提交
253 254
            results.append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
G
George Ni 已提交
255
            self.save_results(data, frame_id, online_ids, online_tlwhs,
G
George Ni 已提交
256 257
                              online_scores, timer.average_time, show_image,
                              save_dir)
G
George Ni 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def mot_evaluate(self,
                     data_root,
                     seqs,
                     output_dir,
                     data_type='mot',
                     model_type='JDE',
                     save_images=False,
                     save_videos=False,
                     show_image=False,
                     det_results_dir=''):
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
        assert data_type in ['mot', 'kitti'], \
            "data_type should be 'mot' or 'kitti'"
        assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
            "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"

        # run tracking
281

G
George Ni 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        n_frame = 0
        timer_avgs, timer_calls = [], []
        for seq in seqs:
            save_dir = os.path.join(output_dir, 'mot_outputs',
                                    seq) if save_images or save_videos else None
            logger.info('start seq: {}'.format(seq))

            infer_dir = os.path.join(data_root, seq, 'img1')
            images = self.get_infer_images(infer_dir)
            self.dataset.set_images(images)

            dataloader = create('EvalMOTReader')(self.dataset, 0)

            result_filename = os.path.join(result_root, '{}.txt'.format(seq))
            meta_info = open(os.path.join(data_root, seq, 'seqinfo.ini')).read()
            frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
                                       meta_info.find('\nseqLength')])
G
George Ni 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
            with paddle.no_grad():
                if model_type in ['JDE', 'FairMOT']:
                    results, nf, ta, tc = self._eval_seq_jde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate)
                elif model_type in ['DeepSORT']:
                    results, nf, ta, tc = self._eval_seq_sde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate,
                        det_file=os.path.join(det_results_dir,
                                              '{}.txt'.format(seq)))
                else:
                    raise ValueError(model_type)
G
George Ni 已提交
316 317 318 319 320 321 322

            self.write_mot_results(result_filename, results, data_type)
            n_frame += nf
            timer_avgs.append(ta)
            timer_calls.append(tc)

            if save_videos:
G
George Ni 已提交
323 324 325
                output_video_path = os.path.join(save_dir, '..',
                                                 '{}_vis.mp4'.format(seq))
                cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
                    save_dir, output_video_path)
                os.system(cmd_str)
                logger.info('Save video in {}.'.format(output_video_path))

            logger.info('Evaluate seq: {}'.format(seq))
            # update metrics
            for metric in self._metrics:
                metric.update(data_root, seq, data_type, result_root,
                              result_filename)

        timer_avgs = np.asarray(timer_avgs)
        timer_calls = np.asarray(timer_calls)
        all_time = np.dot(timer_avgs, timer_calls)
        avg_time = all_time / np.sum(timer_calls)
        logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(
            all_time, 1.0 / avg_time))

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def get_infer_images(self, infer_dir):
        assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)
        images = set()
        assert os.path.isdir(infer_dir), \
            "infer_dir {} is not a directory".format(infer_dir)
        exts = ['jpg', 'jpeg', 'png', 'bmp']
        exts += [ext.upper() for ext in exts]
        for ext in exts:
            images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
        images = list(images)
        images.sort()
        assert len(images) > 0, "no image found in {}".format(infer_dir)
        logger.info("Found {} inference images in total.".format(len(images)))
        return images

    def mot_predict(self,
                    video_file,
                    output_dir,
                    data_type='mot',
                    model_type='JDE',
                    save_images=False,
                    save_videos=True,
                    show_image=False,
374 375
                    det_results_dir='',
                    draw_threshold=0.5):
G
George Ni 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
        assert data_type in ['mot', 'kitti'], \
            "data_type should be 'mot' or 'kitti'"
        assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
            "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"

        # run tracking
        seq = video_file.split('/')[-1].split('.')[0]
        save_dir = os.path.join(output_dir, 'mot_outputs',
                                seq) if save_images or save_videos else None
        logger.info('Starting tracking {}'.format(video_file))

        self.dataset.set_video(video_file)
        dataloader = create('TestMOTReader')(self.dataset, 0)
        result_filename = os.path.join(result_root, '{}.txt'.format(seq))
        frame_rate = self.dataset.frame_rate

G
George Ni 已提交
395 396 397 398 399 400
        with paddle.no_grad():
            if model_type in ['JDE', 'FairMOT']:
                results, nf, ta, tc = self._eval_seq_jde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
401 402
                    frame_rate=frame_rate,
                    draw_threshold=draw_threshold)
G
George Ni 已提交
403 404 405 406 407 408 409
            elif model_type in ['DeepSORT']:
                results, nf, ta, tc = self._eval_seq_sde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
                    frame_rate=frame_rate,
                    det_file=os.path.join(det_results_dir,
410 411
                                          '{}.txt'.format(seq)),
                    draw_threshold=draw_threshold)
G
George Ni 已提交
412 413
            else:
                raise ValueError(model_type)
G
George Ni 已提交
414

G
George Ni 已提交
415 416
        self.write_mot_results(result_filename, results, data_type)

G
George Ni 已提交
417
        if save_videos:
G
George Ni 已提交
418 419 420
            output_video_path = os.path.join(save_dir, '..',
                                             '{}_vis.mp4'.format(seq))
            cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
421 422 423 424 425 426
                save_dir, output_video_path)
            os.system(cmd_str)
            logger.info('Save video in {}'.format(output_video_path))

    def write_mot_results(self, filename, results, data_type='mot'):
        if data_type in ['mot', 'mcmot', 'lab']:
G
George Ni 已提交
427
            save_format = '{frame},{id},{x1},{y1},{w},{h},{score},-1,-1,-1\n'
G
George Ni 已提交
428 429 430 431 432 433
        elif data_type == 'kitti':
            save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
        else:
            raise ValueError(data_type)

        with open(filename, 'w') as f:
G
George Ni 已提交
434
            for frame_id, tlwhs, tscores, track_ids in results:
G
George Ni 已提交
435 436
                if data_type == 'kitti':
                    frame_id -= 1
G
George Ni 已提交
437
                for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
G
George Ni 已提交
438 439 440 441 442 443 444 445 446 447 448 449
                    if track_id < 0:
                        continue
                    x1, y1, w, h = tlwh
                    x2, y2 = x1 + w, y1 + h
                    line = save_format.format(
                        frame=frame_id,
                        id=track_id,
                        x1=x1,
                        y1=y1,
                        x2=x2,
                        y2=y2,
                        w=w,
G
George Ni 已提交
450 451
                        h=h,
                        score=score)
G
George Ni 已提交
452 453 454 455
                    f.write(line)
        logger.info('MOT results save in {}'.format(filename))

    def save_results(self, data, frame_id, online_ids, online_tlwhs,
G
George Ni 已提交
456
                     online_scores, average_time, show_image, save_dir):
G
George Ni 已提交
457 458 459 460 461 462 463
        if show_image or save_dir is not None:
            assert 'ori_image' in data
            img0 = data['ori_image'].numpy()[0]
            online_im = mot_vis.plot_tracking(
                img0,
                online_tlwhs,
                online_ids,
G
George Ni 已提交
464
                online_scores,
G
George Ni 已提交
465 466 467 468 469 470 471 472
                frame_id=frame_id,
                fps=1. / average_time)
        if show_image:
            cv2.imshow('online_im', online_im)
        if save_dir is not None:
            cv2.imwrite(
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)),
                online_im)