lookup_table_op.cc 6.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/operators/lookup_table_op.h"
#include "paddle/fluid/framework/var_type_inference.h"
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
26 27 28 29 30 31 32 33 34
    PADDLE_ENFORCE(ctx->HasInput("W"),
                   "Input(W) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Ids"),
                   "Input(Ids) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LookupTableOp should not be null.");

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
35
    int ids_rank = ids_dims.size();
Q
Qiao Longfei 已提交
36

37 38 39
    PADDLE_ENFORCE_EQ(table_dims.size(), 2);
    PADDLE_ENFORCE_EQ(ids_dims[ids_rank - 1], 1,
                      "The last dimension of the 'Ids' tensor must be 1.");
40

41 42 43 44
    auto output_dims =
        framework::vectorize(framework::slice_ddim(ids_dims, 0, ids_rank - 1));
    output_dims.push_back(table_dims[1]);
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
45 46 47 48 49

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
50
  }
Y
Yu Yang 已提交
51

52
 protected:
53
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
54
      const framework::ExecutionContext& ctx) const override {
Q
qiaolongfei 已提交
55 56
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
57
  }
58 59 60 61
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
62
  void Make() override {
63
    AddInput("W",
C
chengduoZH 已提交
64
             "(Tensor) The input represents embedding tensors, "
K
kexinzhao 已提交
65
             "which is a learnable parameter.");
66 67 68
    AddInput("Ids",
             "An input with type int32 or int64 "
             "contains the ids to be looked up in W. "
69
             "The last dimension size must be 1.");
70
    AddOutput("Out", "The lookup results, which have the same type as W.");
C
chengduoZH 已提交
71
    AddAttr<bool>("is_sparse",
C
chengduoZH 已提交
72
                  "(boolean, default false) "
C
chengduoZH 已提交
73
                  "Sparse update.")
C
chengduoZH 已提交
74
        .SetDefault(false);
75 76 77
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
        .SetDefault(false);
C
chengduoZH 已提交
78 79 80 81 82
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
83
        .SetDefault(kNoPadding);
M
minqiyang 已提交
84 85
    // NOTE(minqiyang): grad_inplace is an temporal attribute,
    // please do NOT set this attribute in python layer.
M
minqiyang 已提交
86 87 88 89
    AddAttr<bool>("grad_inplace",
                  "(boolean, default false) "
                  "If the grad op reuse the input's variable.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
90 91

    // for parameter prefetch
Q
Qiao Longfei 已提交
92
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
Q
Qiao Longfei 已提交
93 94 95 96 97 98 99 100
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
Q
Qiao Longfei 已提交
101
        .SetDefault({});
Q
Qiao Longfei 已提交
102

C
chengduoZH 已提交
103
    AddComment(R"DOC(
C
chengduoZH 已提交
104
Lookup Table Operator.
C
chengduoZH 已提交
105

C
chengduoZH 已提交
106
This operator is used to perform lookups on the parameter W,
107
then concatenated into a dense tensor.
108

109 110
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
C
chengduoZH 已提交
111 112 113 114 115

)DOC");
  }
};

116 117 118 119 120 121 122 123 124
class LookupTableOpGradDescMaker
    : public framework::DefaultGradOpDescMaker<true> {
  using ::paddle::framework::DefaultGradOpDescMaker<
      true>::DefaultGradOpDescMaker;

 protected:
  virtual std::string GradOpType() const { return "lookup_table_grad"; }
};

125 126 127 128
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

129
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
130 131
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
132
  }
Y
Yu Yang 已提交
133

134
 protected:
135
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
136
      const framework::ExecutionContext& ctx) const override {
Q
Qiao Longfei 已提交
137
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("Out"));
Q
qiaolongfei 已提交
138
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
139
  }
140 141
};

142 143
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
144 145
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
146 147 148 149
    auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
    auto attr = op_desc.GetAttr("is_sparse");
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
150 151
      VLOG(30) << "lookup_table_grad op " << framework::GradVarName("W")
               << " is set to SelectedRows";
152
      block->Var(out_var_name)
153
          ->SetType(framework::proto::VarType::SELECTED_ROWS);
154
    } else {
155 156
      VLOG(30) << "lookup_table_grad op " << framework::GradVarName("W")
               << " is set to LoDTensor";
157
      block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR);
158
    }
159
    block->Var(out_var_name)->SetDataType(block->Var("W")->GetDataType());
160 161 162
  }
};

163 164 165 166
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
167 168 169 170 171 172 173 174 175
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp,
                  ops::LookupTableOpGradDescMaker, ops::LookupTableOpMaker);
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
                       ops::LookupTableKernel<double>);
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
                       ops::LookupTableGradKernel<double>);