lookup_table_op.cc 6.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/operators/lookup_table_op.h"
#include "paddle/fluid/framework/var_type_inference.h"
17 18 19 20

namespace paddle {
namespace operators {

Q
qiaolongfei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
static inline framework::OpKernelType ExpectedKernelType(
    const framework::ExecutionContext& ctx) {
  auto* table_var = ctx.InputVar("W");
  if (table_var->IsType<LoDTensor>()) {
    return framework::OpKernelType(
        framework::ToDataType(table_var->Get<LoDTensor>().type()),
        ctx.device_context());
  } else if (table_var->IsType<SelectedRows>()) {
    return framework::OpKernelType(
        framework::ToDataType(table_var->Get<SelectedRows>().value().type()),
        ctx.device_context());
  } else {
    PADDLE_THROW("W should be LoDTensor or SelectedRows");
  }
}

37 38 39 40
class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

41
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
42 43 44 45 46 47 48 49 50 51
    PADDLE_ENFORCE(ctx->HasInput("W"),
                   "Input(W) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Ids"),
                   "Input(Ids) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LookupTableOp should not be null.");

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");

C
chengduoZH 已提交
52
    auto ids_var_type = ctx->GetInputsVarType("Ids").front();
C
chengduoZH 已提交
53 54 55 56 57
    // The type of Ids(Input) is SelectedRows or LoDTensor, when Ids's type
    // is LoDTensor, this tensor contains the ids to be looked up in W
    // and it must be a column vector with rank = 2 while the 2nd dimension
    // size must be 1, when Ids's type is SelectedRows, the rows of Ids
    // contains the ids to be looked up in W;
C
chengduoZH 已提交
58 59 60 61
    if (ids_var_type == framework::proto::VarType::LOD_TENSOR) {
      PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
      PADDLE_ENFORCE_EQ(ids_dims[1], 1);
    }
62

Q
Qiao Longfei 已提交
63 64
    ctx->SetOutputDim("Out", {ids_dims[0], table_dims[1]});
    ctx->ShareLoD("Ids", /*->*/ "Out");
65
  }
Y
Yu Yang 已提交
66

67
 protected:
68
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
69
      const framework::ExecutionContext& ctx) const override {
Q
qiaolongfei 已提交
70
    return ExpectedKernelType(ctx);
Y
Yu Yang 已提交
71
  }
72 73 74 75
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
76
  LookupTableOpMaker(OpProto* proto, OpAttrChecker* op_checker)
77 78
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("W",
C
chengduoZH 已提交
79
             "(Tensor) The input represents embedding tensors, "
K
kexinzhao 已提交
80
             "which is a learnable parameter.");
C
chengduoZH 已提交
81 82 83 84 85 86 87 88 89 90 91
    AddInput(
        "Ids",
        "(Tensor or SelectedRows) Ids's type can be Tensor or "
        "SelectedRows, when Ids's type is Tensor, this tensor contains "
        "the ids to be looked up in W and it must be a column vector with "
        "rank = 2 while the 2nd dimension size must be 1; when Ids's type is "
        "SelectedRows, the rows of Ids contains the ids to be looked up "
        "in W.");
    AddOutput("Out",
              "(Tensor or SelectedRows) The lookup results, which have the "
              "same type as W.");
C
chengduoZH 已提交
92
    AddAttr<bool>("is_sparse",
C
chengduoZH 已提交
93
                  "(boolean, default false) "
C
chengduoZH 已提交
94
                  "Sparse update.")
C
chengduoZH 已提交
95
        .SetDefault(false);
C
chengduoZH 已提交
96 97 98 99 100
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
101
        .SetDefault(kNoPadding);
C
chengduoZH 已提交
102
    AddComment(R"DOC(
C
chengduoZH 已提交
103
Lookup Table Operator.
C
chengduoZH 已提交
104

C
chengduoZH 已提交
105
This operator is used to perform lookups on the parameter W,
C
chengduoZH 已提交
106 107 108 109 110 111 112 113
then concatenated into a dense or sparse tensor.

The type of Ids(Input) is SelectedRows, Tensor or LoDTensor, when Ids's
type is SelectedRows, the rows of Ids contains the ids to be looked up in W;
when Ids's type is Tensor, this tensor contains the ids to be looked up in W
and it must be a column vector with rank = 2 while the 2nd dimension size must be 1,
at this time, Ids can carry the LoD (Level of Details) information, or not, and
the output only shares the LoD information with input Ids.
114

C
chengduoZH 已提交
115 116 117 118 119

)DOC");
  }
};

120 121 122 123 124 125 126 127 128
class LookupTableOpGradDescMaker
    : public framework::DefaultGradOpDescMaker<true> {
  using ::paddle::framework::DefaultGradOpDescMaker<
      true>::DefaultGradOpDescMaker;

 protected:
  virtual std::string GradOpType() const { return "lookup_table_grad"; }
};

129 130 131 132
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

133
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
134 135
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
136
  }
Y
Yu Yang 已提交
137

138
 protected:
139
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
140
      const framework::ExecutionContext& ctx) const override {
Q
qiaolongfei 已提交
141
    return ExpectedKernelType(ctx);
Y
Yu Yang 已提交
142
  }
143 144
};

145 146
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
147 148
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
149 150 151 152 153 154
    auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
    auto attr = op_desc.GetAttr("is_sparse");
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
155
      block->Var(out_var_name)
156
          ->SetType(framework::proto::VarType::SELECTED_ROWS);
157 158 159
    } else {
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
160
      block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR);
161 162 163 164
    }
  }
};

165 166 167 168
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
169 170 171 172 173 174 175 176 177
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp,
                  ops::LookupTableOpGradDescMaker, ops::LookupTableOpMaker);
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
                       ops::LookupTableKernel<double>);
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
                       ops::LookupTableGradKernel<double>);