test_yolov3_loss_op.py 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import division

17 18
import unittest
import numpy as np
19 20
from scipy.special import logit
from scipy.special import expit
21 22
from op_test import OpTest

23 24
from paddle.fluid import core

D
dengkaipeng 已提交
25

26 27
def l1loss(x, y):
    return abs(x - y)
28 29


30
def sce(x, label):
31 32 33
    sigmoid_x = expit(x)
    term1 = label * np.log(sigmoid_x)
    term2 = (1.0 - label) * np.log(1.0 - sigmoid_x)
34
    return -term1 - term2
35 36


37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-1.0 * x))


def batch_xywh_box_iou(box1, box2):
    b1_left = box1[:, :, 0] - box1[:, :, 2] / 2
    b1_right = box1[:, :, 0] + box1[:, :, 2] / 2
    b1_top = box1[:, :, 1] - box1[:, :, 3] / 2
    b1_bottom = box1[:, :, 1] + box1[:, :, 3] / 2

    b2_left = box2[:, :, 0] - box2[:, :, 2] / 2
    b2_right = box2[:, :, 0] + box2[:, :, 2] / 2
    b2_top = box2[:, :, 1] - box2[:, :, 3] / 2
    b2_bottom = box2[:, :, 1] + box2[:, :, 3] / 2

    left = np.maximum(b1_left[:, :, np.newaxis], b2_left[:, np.newaxis, :])
    right = np.minimum(b1_right[:, :, np.newaxis], b2_right[:, np.newaxis, :])
    top = np.maximum(b1_top[:, :, np.newaxis], b2_top[:, np.newaxis, :])
    bottom = np.minimum(b1_bottom[:, :, np.newaxis],
                        b2_bottom[:, np.newaxis, :])

    inter_w = np.clip(right - left, 0., 1.)
    inter_h = np.clip(bottom - top, 0., 1.)
    inter_area = inter_w * inter_h

    b1_area = (b1_right - b1_left) * (b1_bottom - b1_top)
    b2_area = (b2_right - b2_left) * (b2_bottom - b2_top)
    union = b1_area[:, :, np.newaxis] + b2_area[:, np.newaxis, :] - inter_area

    return inter_area / union


D
dengkaipeng 已提交
69
def YOLOv3Loss(x, gtbox, gtlabel, gtscore, attrs):
70 71 72 73 74 75 76 77 78
    n, c, h, w = x.shape
    b = gtbox.shape[1]
    anchors = attrs['anchors']
    an_num = len(anchors) // 2
    anchor_mask = attrs['anchor_mask']
    mask_num = len(anchor_mask)
    class_num = attrs["class_num"]
    ignore_thresh = attrs['ignore_thresh']
    downsample = attrs['downsample']
T
tink2123 已提交
79
    use_label_smooth = attrs['use_label_smooth']
80 81 82 83
    input_size = downsample * h
    x = x.reshape((n, mask_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))
    loss = np.zeros((n)).astype('float32')

D
dengkaipeng 已提交
84 85 86
    label_pos = 1.0 - 1.0 / class_num if use_label_smooth else 1.0
    label_neg = 1.0 / class_num if use_label_smooth else 0.0

87 88 89 90 91 92
    pred_box = x[:, :, :, :, :4].copy()
    grid_x = np.tile(np.arange(w).reshape((1, w)), (h, 1))
    grid_y = np.tile(np.arange(h).reshape((h, 1)), (1, w))
    pred_box[:, :, :, :, 0] = (grid_x + sigmoid(pred_box[:, :, :, :, 0])) / w
    pred_box[:, :, :, :, 1] = (grid_y + sigmoid(pred_box[:, :, :, :, 1])) / h

D
dengkaipeng 已提交
93 94 95 96
    x[:, :, :, :, 5:] = np.where(x[:, :, :, :, 5:] < -0.5, x[:, :, :, :, 5:],
                                 np.ones_like(x[:, :, :, :, 5:]) * 1.0 /
                                 class_num)

97 98 99 100 101 102 103 104 105 106 107 108
    mask_anchors = []
    for m in anchor_mask:
        mask_anchors.append((anchors[2 * m], anchors[2 * m + 1]))
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in mask_anchors])
    anchor_w = anchors_s[:, 0:1].reshape((1, mask_num, 1, 1))
    anchor_h = anchors_s[:, 1:2].reshape((1, mask_num, 1, 1))
    pred_box[:, :, :, :, 2] = np.exp(pred_box[:, :, :, :, 2]) * anchor_w
    pred_box[:, :, :, :, 3] = np.exp(pred_box[:, :, :, :, 3]) * anchor_h

    pred_box = pred_box.reshape((n, -1, 4))
    pred_obj = x[:, :, :, :, 4].reshape((n, -1))
D
dengkaipeng 已提交
109
    objness = np.zeros(pred_box.shape[:2]).astype('float32')
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    ious = batch_xywh_box_iou(pred_box, gtbox)
    ious_max = np.max(ious, axis=-1)
    objness = np.where(ious_max > ignore_thresh, -np.ones_like(objness),
                       objness)

    gtbox_shift = gtbox.copy()
    gtbox_shift[:, :, 0] = 0
    gtbox_shift[:, :, 1] = 0

    anchors = [(anchors[2 * i], anchors[2 * i + 1]) for i in range(0, an_num)]
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in anchors])
    anchor_boxes = np.concatenate(
        [np.zeros_like(anchors_s), anchors_s], axis=-1)
    anchor_boxes = np.tile(anchor_boxes[np.newaxis, :, :], (n, 1, 1))
    ious = batch_xywh_box_iou(gtbox_shift, anchor_boxes)
    iou_matches = np.argmax(ious, axis=-1)
127
    gt_matches = iou_matches.copy()
128 129 130
    for i in range(n):
        for j in range(b):
            if gtbox[i, j, 2:].sum() == 0:
131
                gt_matches[i, j] = -1
132 133
                continue
            if iou_matches[i, j] not in anchor_mask:
134
                gt_matches[i, j] = -1
135 136
                continue
            an_idx = anchor_mask.index(iou_matches[i, j])
137
            gt_matches[i, j] = an_idx
138 139 140 141 142 143 144
            gi = int(gtbox[i, j, 0] * w)
            gj = int(gtbox[i, j, 1] * h)

            tx = gtbox[i, j, 0] * w - gi
            ty = gtbox[i, j, 1] * w - gj
            tw = np.log(gtbox[i, j, 2] * input_size / mask_anchors[an_idx][0])
            th = np.log(gtbox[i, j, 3] * input_size / mask_anchors[an_idx][1])
D
dengkaipeng 已提交
145
            scale = (2.0 - gtbox[i, j, 2] * gtbox[i, j, 3]) * gtscore[i, j]
146 147 148 149 150
            loss[i] += sce(x[i, an_idx, gj, gi, 0], tx) * scale
            loss[i] += sce(x[i, an_idx, gj, gi, 1], ty) * scale
            loss[i] += l1loss(x[i, an_idx, gj, gi, 2], tw) * scale
            loss[i] += l1loss(x[i, an_idx, gj, gi, 3], th) * scale

D
dengkaipeng 已提交
151
            objness[i, an_idx * h * w + gj * w + gi] = gtscore[i, j]
152 153

            for label_idx in range(class_num):
D
dengkaipeng 已提交
154
                loss[i] += sce(x[i, an_idx, gj, gi, 5 + label_idx], label_pos
D
dengkaipeng 已提交
155 156
                               if label_idx == gtlabel[i, j] else
                               label_neg) * gtscore[i, j]
157 158

        for j in range(mask_num * h * w):
D
dengkaipeng 已提交
159 160 161 162
            if objness[i, j] > 0:
                loss[i] += sce(pred_obj[i, j], 1.0) * objness[i, j]
            elif objness[i, j] == 0:
                loss[i] += sce(pred_obj[i, j], 0.0)
163

D
dengkaipeng 已提交
164
    return (loss, objness.reshape((n, mask_num, h, w)).astype('float32'), \
165
            gt_matches.astype('int32'))
166 167


168 169 170 171
class TestYolov3LossOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'yolov3_loss'
172
        x = logit(np.random.uniform(0, 1, self.x_shape).astype('float32'))
173
        gtbox = np.random.random(size=self.gtbox_shape).astype('float32')
D
dengkaipeng 已提交
174
        gtlabel = np.random.randint(0, self.class_num, self.gtbox_shape[:2])
D
dengkaipeng 已提交
175
        gtscore = np.random.random(self.gtbox_shape[:2]).astype('float32')
D
dengkaipeng 已提交
176 177 178
        gtmask = np.random.randint(0, 2, self.gtbox_shape[:2])
        gtbox = gtbox * gtmask[:, :, np.newaxis]
        gtlabel = gtlabel * gtmask
179 180 181

        self.attrs = {
            "anchors": self.anchors,
182
            "anchor_mask": self.anchor_mask,
183 184
            "class_num": self.class_num,
            "ignore_thresh": self.ignore_thresh,
185
            "downsample": self.downsample,
186
            "use_label_smooth": self.use_label_smooth,
187 188
        }

D
dengkaipeng 已提交
189 190 191
        self.inputs = {
            'X': x,
            'GTBox': gtbox.astype('float32'),
D
dengkaipeng 已提交
192 193
            'GTLabel': gtlabel.astype('int32'),
            'GTScore': gtscore.astype('float32')
D
dengkaipeng 已提交
194
        }
D
dengkaipeng 已提交
195 196
        loss, objness, gt_matches = YOLOv3Loss(x, gtbox, gtlabel, gtscore,
                                               self.attrs)
197 198 199 200 201
        self.outputs = {
            'Loss': loss,
            'ObjectnessMask': objness,
            "GTMatchMask": gt_matches
        }
202 203

    def test_check_output(self):
204
        place = core.CPUPlace()
205
        self.check_output_with_place(place, atol=2e-3)
206

D
dengkaipeng 已提交
207 208 209 210 211
    def test_check_grad_ignore_gtbox(self):
        place = core.CPUPlace()
        self.check_grad_with_place(
            place, ['X'],
            'Loss',
D
dengkaipeng 已提交
212 213
            no_grad_set=set(["GTBox", "GTLabel", "GTScore"]),
            max_relative_error=0.2)
214 215

    def initTestCase(self):
216 217 218 219 220
        self.anchors = [
            10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198,
            373, 326
        ]
        self.anchor_mask = [0, 1, 2]
D
dengkaipeng 已提交
221
        self.class_num = 10
222 223 224
        self.ignore_thresh = 0.7
        self.downsample = 32
        self.x_shape = (3, len(self.anchor_mask) * (5 + self.class_num), 5, 5)
D
dengkaipeng 已提交
225
        self.gtbox_shape = (3, 10, 4)
226 227 228
        self.use_label_smooth = True


D
dengkaipeng 已提交
229
class TestYolov3LossWithoutLabelSmooth(TestYolov3LossOp):
230
    def set_label_smooth(self):
D
dengkaipeng 已提交
231
        self.use_label_smooth = False
232 233 234 235


if __name__ == "__main__":
    unittest.main()