cb_resnet.py 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.framework import Variable
from paddle.fluid.regularizer import L2Decay
from paddle.fluid.initializer import Constant

from ppdet.core.workspace import register, serializable
from numbers import Integral

from .name_adapter import NameAdapter
Y
Yang Zhang 已提交
31
from .nonlocal_helper import add_space_nonlocal
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

__all__ = ['CBResNet']


@register
@serializable
class CBResNet(object):
    """
    CBNet, see https://arxiv.org/abs/1909.03625
    Args:
        depth (int): ResNet depth, should be 18, 34, 50, 101, 152.
        freeze_at (int): freeze the backbone at which stage
        norm_type (str): normalization type, 'bn'/'sync_bn'/'affine_channel'
        freeze_norm (bool): freeze normalization layers
        norm_decay (float): weight decay for normalization layer weights
        variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
        feature_maps (list): index of stages whose feature maps are returned
        dcn_v2_stages (list): index of stages who select deformable conv v2
        nonlocal_stages (list): index of stages who select nonlocal networks
        repeat_num (int): number of repeat for backbone
    Attention:
        1. Here we set the ResNet as the base backbone.
        2. All the pretraned params are copied from corresponding names,
           but with different names to avoid name refliction.
    """

    def __init__(self,
                 depth=50,
                 freeze_at=2,
                 norm_type='bn',
                 freeze_norm=True,
                 norm_decay=0.,
                 variant='b',
                 feature_maps=[2, 3, 4, 5],
                 dcn_v2_stages=[],
67
                 nonlocal_stages=[],
L
littletomatodonkey 已提交
68 69
                 repeat_num=2,
                 lr_mult_list=[1., 1., 1., 1.]):
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        super(CBResNet, self).__init__()

        if isinstance(feature_maps, Integral):
            feature_maps = [feature_maps]

        assert depth in [18, 34, 50, 101, 152, 200], \
            "depth {} not in [18, 34, 50, 101, 152, 200]"
        assert variant in ['a', 'b', 'c', 'd'], "invalid ResNet variant"
        assert 0 <= freeze_at <= 4, "freeze_at should be 0, 1, 2, 3 or 4"
        assert len(feature_maps) > 0, "need one or more feature maps"
        assert norm_type in ['bn', 'sync_bn', 'affine_channel']
        assert not (len(nonlocal_stages)>0 and depth<50), \
                    "non-local is not supported for resnet18 or resnet34"

        self.depth = depth
        self.dcn_v2_stages = dcn_v2_stages
        self.freeze_at = freeze_at
        self.norm_type = norm_type
        self.norm_decay = norm_decay
        self.freeze_norm = freeze_norm
        self.variant = variant
        self._model_type = 'ResNet'
        self.feature_maps = feature_maps
        self.repeat_num = repeat_num
        self.curr_level = 0
        self.depth_cfg = {
            18: ([2, 2, 2, 2], self.basicblock),
            34: ([3, 4, 6, 3], self.basicblock),
            50: ([3, 4, 6, 3], self.bottleneck),
            101: ([3, 4, 23, 3], self.bottleneck),
            152: ([3, 8, 36, 3], self.bottleneck),
            200: ([3, 12, 48, 3], self.bottleneck),
        }
Y
Yang Zhang 已提交
103

104 105
        self.nonlocal_stages = nonlocal_stages
        self.nonlocal_mod_cfg = {
106 107 108 109
            50: 2,
            101: 5,
            152: 8,
            200: 12,
110
        }
Y
Yang Zhang 已提交
111

L
littletomatodonkey 已提交
112 113 114
        self.lr_mult_list = lr_mult_list
        self.stage_num = -1

115 116 117
        self.stage_filters = [64, 128, 256, 512]
        self._c1_out_chan_num = 64
        self.na = NameAdapter(self)
Y
Yang Zhang 已提交
118

119 120 121 122 123 124 125
    def _conv_offset(self,
                     input,
                     filter_size,
                     stride,
                     padding,
                     act=None,
                     name=None):
126
        out_channel = filter_size * filter_size * 3
127 128
        out = fluid.layers.conv2d(
            input,
129 130 131 132 133 134 135 136 137 138 139
            num_filters=out_channel,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            param_attr=ParamAttr(
                initializer=Constant(0.0), name=name + ".w_0"),
            bias_attr=ParamAttr(
                initializer=Constant(0.0), name=name + ".b_0"),
            act=act,
            name=name)
        return out
Y
Yang Zhang 已提交
140

141 142 143 144 145 146 147 148 149
    def _conv_norm(self,
                   input,
                   num_filters,
                   filter_size,
                   stride=1,
                   groups=1,
                   act=None,
                   name=None,
                   dcn=False):
L
littletomatodonkey 已提交
150 151 152 153 154 155 156

        # need fine lr for distilled model, default as 1.0
        lr_mult = 1.0
        mult_idx = max(self.stage_num - 2, 0)
        mult_idx = min(self.stage_num - 2, 3)
        lr_mult = self.lr_mult_list[mult_idx]

157 158 159 160 161 162 163 164 165
        if not dcn:
            conv = fluid.layers.conv2d(
                input=input,
                num_filters=num_filters,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=groups,
                act=None,
166
                param_attr=ParamAttr(
L
littletomatodonkey 已提交
167 168
                    name=name + "_weights_" + str(self.curr_level),
                    learning_rate=lr_mult),
169 170 171 172 173 174 175 176 177
                bias_attr=False)
        else:
            offset_mask = self._conv_offset(
                input=input,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                act=None,
                name=name + "_conv_offset_" + str(self.curr_level))
178 179
            offset_channel = filter_size**2 * 2
            mask_channel = filter_size**2
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
            offset, mask = fluid.layers.split(
                input=offset_mask,
                num_or_sections=[offset_channel, mask_channel],
                dim=1)
            mask = fluid.layers.sigmoid(mask)
            conv = fluid.layers.deformable_conv(
                input=input,
                offset=offset,
                mask=mask,
                num_filters=num_filters,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=groups,
                deformable_groups=1,
                im2col_step=1,
196
                param_attr=ParamAttr(
L
littletomatodonkey 已提交
197 198
                    name=name + "_weights_" + str(self.curr_level),
                    learning_rate=lr_mult),
199 200 201 202
                bias_attr=False)

        bn_name = self.na.fix_conv_norm_name(name)

L
littletomatodonkey 已提交
203
        norm_lr = 0. if self.freeze_norm else lr_mult
204 205
        norm_decay = self.norm_decay
        pattr = ParamAttr(
206
            name=bn_name + '_scale_' + str(self.curr_level),
207 208 209
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))
        battr = ParamAttr(
210
            name=bn_name + '_offset_' + str(self.curr_level),
211 212 213 214 215 216 217 218
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))

        if self.norm_type in ['bn', 'sync_bn']:
            global_stats = True if self.freeze_norm else False
            out = fluid.layers.batch_norm(
                input=conv,
                act=act,
219
                name=bn_name + '.output.1_' + str(self.curr_level),
220 221
                param_attr=pattr,
                bias_attr=battr,
222 223 224
                moving_mean_name=bn_name + '_mean_' + str(self.curr_level),
                moving_variance_name=bn_name + '_variance_' +
                str(self.curr_level),
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
                use_global_stats=global_stats)
            scale = fluid.framework._get_var(pattr.name)
            bias = fluid.framework._get_var(battr.name)
        elif self.norm_type == 'affine_channel':
            assert False, "deprecated!!!"
        if self.freeze_norm:
            scale.stop_gradient = True
            bias.stop_gradient = True
        return out

    def _shortcut(self, input, ch_out, stride, is_first, name):
        max_pooling_in_short_cut = self.variant == 'd'
        ch_in = input.shape[1]
        # the naming rule is same as pretrained weight
        name = self.na.fix_shortcut_name(name)
        if ch_in != ch_out or stride != 1 or (self.depth < 50 and is_first):
            if max_pooling_in_short_cut and not is_first:
                input = fluid.layers.pool2d(
                    input=input,
                    pool_size=2,
                    pool_stride=2,
                    pool_padding=0,
                    ceil_mode=True,
                    pool_type='avg')
                return self._conv_norm(input, ch_out, 1, 1, name=name)
            return self._conv_norm(input, ch_out, 1, stride, name=name)
        else:
            return input

    def bottleneck(self, input, num_filters, stride, is_first, name, dcn=False):
        if self.variant == 'a':
            stride1, stride2 = stride, 1
        else:
            stride1, stride2 = 1, stride

        # ResNeXt
        groups = getattr(self, 'groups', 1)
        group_width = getattr(self, 'group_width', -1)
        if groups == 1:
            expand = 4
        elif (groups * group_width) == 256:
            expand = 1
        else:  # FIXME hard code for now, handles 32x4d, 64x4d and 32x8d
            num_filters = num_filters // 2
            expand = 2

        conv_name1, conv_name2, conv_name3, \
            shortcut_name = self.na.fix_bottleneck_name(name)
Y
Yang Zhang 已提交
273

274 275 276 277 278 279 280 281 282 283 284 285 286 287
        conv_def = [[num_filters, 1, stride1, 'relu', 1, conv_name1],
                    [num_filters, 3, stride2, 'relu', groups, conv_name2],
                    [num_filters * expand, 1, 1, None, 1, conv_name3]]

        residual = input
        for i, (c, k, s, act, g, _name) in enumerate(conv_def):
            residual = self._conv_norm(
                input=residual,
                num_filters=c,
                filter_size=k,
                stride=s,
                act=act,
                groups=g,
                name=_name,
288
                dcn=(i == 1 and dcn))
289 290 291 292 293 294 295 296 297 298
        short = self._shortcut(
            input,
            num_filters * expand,
            stride,
            is_first=is_first,
            name=shortcut_name)
        # Squeeze-and-Excitation
        if callable(getattr(self, '_squeeze_excitation', None)):
            residual = self._squeeze_excitation(
                input=residual, num_channels=num_filters, name='fc' + name)
299
        return fluid.layers.elementwise_add(x=short, y=residual, act='relu')
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

    def basicblock(self, input, num_filters, stride, is_first, name, dcn=False):
        assert dcn is False, "Not implemented yet."
        conv0 = self._conv_norm(
            input=input,
            num_filters=num_filters,
            filter_size=3,
            act='relu',
            stride=stride,
            name=name + "_branch2a")
        conv1 = self._conv_norm(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")
        short = self._shortcut(
            input, num_filters, stride, is_first, name=name + "_branch1")
        return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')

    def layer_warp(self, input, stage_num):
        """
        Args:
            input (Variable): input variable.
            stage_num (int): the stage number, should be 2, 3, 4, 5

        Returns:
            The last variable in endpoint-th stage.
        """
        assert stage_num in [2, 3, 4, 5]

L
littletomatodonkey 已提交
331 332
        self.stage_num = stage_num

333 334 335 336 337 338
        stages, block_func = self.depth_cfg[self.depth]
        count = stages[stage_num - 2]

        ch_out = self.stage_filters[stage_num - 2]
        is_first = False if stage_num != 2 else True
        dcn = True if stage_num in self.dcn_v2_stages else False
Y
Yang Zhang 已提交
339

340 341
        nonlocal_mod = 1000
        if stage_num in self.nonlocal_stages:
342 343
            nonlocal_mod = self.nonlocal_mod_cfg[
                self.depth] if stage_num == 4 else 2
Y
Yang Zhang 已提交
344

345 346 347 348 349 350 351 352 353 354 355 356 357 358
        # Make the layer name and parameter name consistent
        # with ImageNet pre-trained model
        conv = input
        for i in range(count):
            conv_name = self.na.fix_layer_warp_name(stage_num, count, i)
            if self.depth < 50:
                is_first = True if i == 0 and stage_num == 2 else False
            conv = block_func(
                input=conv,
                num_filters=ch_out,
                stride=2 if i == 0 and stage_num != 2 else 1,
                is_first=is_first,
                name=conv_name,
                dcn=dcn)
Y
Yang Zhang 已提交
359

360 361
            # add non local model
            dim_in = conv.shape[1]
362 363
            nonlocal_name = "nonlocal_conv{}_lvl{}".format(stage_num,
                                                           self.curr_level)
364
            if i % nonlocal_mod == nonlocal_mod - 1:
365 366 367
                conv = add_space_nonlocal(conv, dim_in, dim_in,
                                          nonlocal_name + '_{}'.format(i),
                                          int(dim_in / 2))
Y
Yang Zhang 已提交
368

369 370 371 372 373 374 375 376
        return conv

    def c1_stage(self, input):
        out_chan = self._c1_out_chan_num

        conv1_name = self.na.fix_c1_stage_name()

        if self.variant in ['c', 'd']:
377 378 379
            conv1_1_name = "conv1_1"
            conv1_2_name = "conv1_2"
            conv1_3_name = "conv1_3"
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
            conv_def = [
                [out_chan // 2, 3, 2, conv1_1_name],
                [out_chan // 2, 3, 1, conv1_2_name],
                [out_chan, 3, 1, conv1_3_name],
            ]
        else:
            conv_def = [[out_chan, 7, 2, conv1_name]]

        for (c, k, s, _name) in conv_def:
            input = self._conv_norm(
                input=input,
                num_filters=c,
                filter_size=k,
                stride=s,
                act='relu',
                name=_name)

        output = fluid.layers.pool2d(
            input=input,
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')
        return output
Y
Yang Zhang 已提交
404

405
    def connect(self, left, right, name):
406
        ch_right = right.shape[1]
407 408 409 410 411 412 413
        conv = self._conv_norm(
            left,
            num_filters=ch_right,
            filter_size=1,
            stride=1,
            act="relu",
            name=name + "_connect")
414 415 416 417 418
        shape = fluid.layers.shape(right)
        shape_hw = fluid.layers.slice(shape, axes=[0], starts=[2], ends=[4])
        out_shape_ = shape_hw
        out_shape = fluid.layers.cast(out_shape_, dtype='int32')
        out_shape.stop_gradient = True
419
        conv = fluid.layers.resize_nearest(conv, scale=2., out_shape=out_shape)
Y
Yang Zhang 已提交
420

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
        output = fluid.layers.elementwise_add(x=right, y=conv)
        return output

    def __call__(self, input):
        assert isinstance(input, Variable)
        assert not (set(self.feature_maps) - set([2, 3, 4, 5])), \
            "feature maps {} not in [2, 3, 4, 5]".format(self.feature_maps)

        res_endpoints = []

        self.curr_level = 0
        res = self.c1_stage(input)
        feature_maps = range(2, max(self.feature_maps) + 1)
        for i in feature_maps:
            res = self.layer_warp(res, i)
            if i in self.feature_maps:
                res_endpoints.append(res)
Y
Yang Zhang 已提交
438

439
        for num in range(1, self.repeat_num):
L
littletomatodonkey 已提交
440
            self.stage_num = -1
441 442
            self.curr_level = num
            res = self.c1_stage(input)
443 444 445
            for i in range(len(res_endpoints)):
                res = self.connect(res_endpoints[i], res, "test_c" + str(i + 1))
                res = self.layer_warp(res, i + 2)
446
                res_endpoints[i] = res
447
                if self.freeze_at >= i + 2:
448
                    res.stop_gradient = True
Y
Yang Zhang 已提交
449

450 451
        return OrderedDict([('res{}_sum'.format(self.feature_maps[idx]), feat)
                            for idx, feat in enumerate(res_endpoints)])