ops.py 31.8 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
# 
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
Q
qingqing01 已提交
13 14 15 16 17 18 19
# limitations under the License.

import paddle
import paddle.nn.functional as F
import paddle.nn as nn
from paddle import ParamAttr
from paddle.regularizer import L2Decay
W
wangguanzhong 已提交
20
from paddle import _C_ops, _legacy_C_ops
Q
qingqing01 已提交
21

W
wangguanzhong 已提交
22 23
from paddle import in_dynamic_mode
from paddle.common_ops_import import Variable, LayerHelper, check_variable_and_dtype, check_type, check_dtype
Q
qingqing01 已提交
24 25

__all__ = [
26 27 28 29 30 31 32 33 34
    'prior_box',
    'box_coder',
    'multiclass_nms',
    'matrix_nms',
    'batch_norm',
    'mish',
    'silu',
    'swish',
    'identity',
Q
qingqing01 已提交
35 36 37
]


S
shangliang Xu 已提交
38 39 40 41
def identity(x):
    return x


W
wangxinxin08 已提交
42
def mish(x):
S
shangliang Xu 已提交
43 44 45
    return F.mish(x) if hasattr(F, mish) else x * F.tanh(F.softplus(x))


46 47 48 49
def silu(x):
    return F.silu(x)


S
shangliang Xu 已提交
50 51 52 53
def swish(x):
    return x * F.sigmoid(x)


54
TRT_ACT_SPEC = {'swish': swish, 'silu': swish}
S
shangliang Xu 已提交
55

56
ACT_SPEC = {'mish': mish, 'silu': silu}
S
shangliang Xu 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80


def get_act_fn(act=None, trt=False):
    assert act is None or isinstance(act, (
        str, dict)), 'name of activation should be str, dict or None'
    if not act:
        return identity

    if isinstance(act, dict):
        name = act['name']
        act.pop('name')
        kwargs = act
    else:
        name = act
        kwargs = dict()

    if trt and name in TRT_ACT_SPEC:
        fn = TRT_ACT_SPEC[name]
    elif name in ACT_SPEC:
        fn = ACT_SPEC[name]
    else:
        fn = getattr(F, name)

    return lambda x: fn(x, **kwargs)
W
wangxinxin08 已提交
81 82


83 84 85
def batch_norm(ch,
               norm_type='bn',
               norm_decay=0.,
86
               freeze_norm=False,
87 88
               initializer=None,
               data_format='NCHW'):
Q
qingqing01 已提交
89

90 91 92 93 94 95 96 97 98 99 100
    norm_lr = 0. if freeze_norm else 1.
    weight_attr = ParamAttr(
        initializer=initializer,
        learning_rate=norm_lr,
        regularizer=L2Decay(norm_decay),
        trainable=False if freeze_norm else True)
    bias_attr = ParamAttr(
        learning_rate=norm_lr,
        regularizer=L2Decay(norm_decay),
        trainable=False if freeze_norm else True)

W
wangxinxin08 已提交
101 102 103 104 105 106
    if norm_type in ['sync_bn', 'bn']:
        norm_layer = nn.BatchNorm2D(
            ch,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
Q
qingqing01 已提交
107

108 109 110 111 112 113 114
    norm_params = norm_layer.parameters()
    if freeze_norm:
        for param in norm_params:
            param.stop_gradient = True

    return norm_layer

Q
qingqing01 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

@paddle.jit.not_to_static
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
              aspect_ratios=[1.],
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
              min_max_aspect_ratios_order=False,
              name=None):
    """

    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Parameters:
       input(Tensor): 4-D tensor(NCHW), the data type should be float32 or float64.
       image(Tensor): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
            Default: None.
       aspect_ratios(list|tuple|float): the aspect ratios of generated
            prior boxes. Default: [1.].
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       step(list|tuple): Prior boxes step across width and height, If
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
            in order of [min, max, aspect_ratios], which is consistent with
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
       name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tuple: A tuple with two Variable (boxes, variances)

        boxes(Tensor): the output prior boxes of PriorBox.
        4-D tensor, the layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total box count of each position of input.

        variances(Tensor): the expanded variances of PriorBox.
        4-D tensor, the layput is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total box count of each position of input

    Examples:
        .. code-block:: python

        import paddle
        from ppdet.modeling import ops

        paddle.enable_static()
        input = paddle.static.data(name="input", shape=[None,3,6,9])
        image = paddle.static.data(name="image", shape=[None,3,9,12])
        box, var = ops.prior_box(
                    input=input,
                    image=image,
                    min_sizes=[100.],
                    clip=True,
                    flip=True)
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()
    check_variable_and_dtype(
        input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box')

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

    cur_max_sizes = None
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
        cur_max_sizes = max_sizes

W
wangguanzhong 已提交
218
    if in_dynamic_mode():
219 220 221 222 223 224
        attrs = ('min_sizes', min_sizes, 'aspect_ratios', aspect_ratios,
                 'variances', variance, 'flip', flip, 'clip', clip, 'step_w',
                 steps[0], 'step_h', steps[1], 'offset', offset,
                 'min_max_aspect_ratios_order', min_max_aspect_ratios_order)
        if cur_max_sizes is not None:
            attrs += ('max_sizes', cur_max_sizes)
W
wangguanzhong 已提交
225
        box, var = _legacy_C_ops.prior_box(input, image, *attrs)
Q
qingqing01 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        return box, var
    else:
        attrs = {
            'min_sizes': min_sizes,
            'aspect_ratios': aspect_ratios,
            'variances': variance,
            'flip': flip,
            'clip': clip,
            'step_w': steps[0],
            'step_h': steps[1],
            'offset': offset,
            'min_max_aspect_ratios_order': min_max_aspect_ratios_order
        }

        if cur_max_sizes is not None:
            attrs['max_sizes'] = cur_max_sizes

        box = helper.create_variable_for_type_inference(dtype)
        var = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="prior_box",
            inputs={"Input": input,
                    "Image": image},
            outputs={"Boxes": box,
                     "Variances": var},
            attrs=attrs, )
        box.stop_gradient = True
        var.stop_gradient = True
        return box, var


@paddle.jit.not_to_static
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
                   nms_threshold=0.3,
                   normalized=True,
                   nms_eta=1.,
266
                   background_label=-1,
Q
qingqing01 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
                   return_index=False,
                   return_rois_num=True,
                   rois_num=None,
                   name=None):
    """
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.
    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.
    Args:
        bboxes (Tensor): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the
                           class number
        scores (Tensor): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided,
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences after the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image. 
            The shape is [B] and data type is int32. B is the number of images.
            If it is not None then return a list of 1-D Tensor. Each element 
            is the output RoIs' number of each image on the corresponding level
            and the shape is [B]. None by default.
        name(str): Name of the multiclass nms op. Default: None.
    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned.
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
        Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
        or A 2-D LoDTensor with shape [No, 10] represents the detections.
        Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3,
        x4, y4]. No is the total number of detections.
        If all images have not detected results, all elements in LoD will be
        0, and output tensor is empty (None).
        Index: Only return when return_index is True. A 2-D LoDTensor with
        shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.
    Examples:
        .. code-block:: python

            import paddle
            from ppdet.modeling import ops
            boxes = paddle.static.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = paddle.static.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out, index = ops.multiclass_nms(bboxes=boxes,
                                            scores=scores,
                                            background_label=0,
                                            score_threshold=0.5,
                                            nms_top_k=400,
                                            nms_threshold=0.3,
                                            keep_top_k=200,
                                            normalized=False,
                                            return_index=True)
    """
    helper = LayerHelper('multiclass_nms3', **locals())

W
wangguanzhong 已提交
363
    if in_dynamic_mode():
Q
qingqing01 已提交
364 365 366 367
        attrs = ('background_label', background_label, 'score_threshold',
                 score_threshold, 'nms_top_k', nms_top_k, 'nms_threshold',
                 nms_threshold, 'keep_top_k', keep_top_k, 'nms_eta', nms_eta,
                 'normalized', normalized)
W
wangguanzhong 已提交
368 369
        output, index, nms_rois_num = _legacy_C_ops.multiclass_nms3(
            bboxes, scores, rois_num, *attrs)
W
wangguanzhong 已提交
370
        if not return_index:
Q
qingqing01 已提交
371 372 373 374 375
            index = None
        return output, nms_rois_num, index

    else:
        output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
W
wangguanzhong 已提交
376
        index = helper.create_variable_for_type_inference(dtype='int32')
Q
qingqing01 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

        inputs = {'BBoxes': bboxes, 'Scores': scores}
        outputs = {'Out': output, 'Index': index}

        if rois_num is not None:
            inputs['RoisNum'] = rois_num

        if return_rois_num:
            nms_rois_num = helper.create_variable_for_type_inference(
                dtype='int32')
            outputs['NmsRoisNum'] = nms_rois_num

        helper.append_op(
            type="multiclass_nms3",
            inputs=inputs,
            attrs={
                'background_label': background_label,
                'score_threshold': score_threshold,
                'nms_top_k': nms_top_k,
                'nms_threshold': nms_threshold,
                'keep_top_k': keep_top_k,
                'nms_eta': nms_eta,
                'normalized': normalized
            },
            outputs=outputs)
        output.stop_gradient = True
        index.stop_gradient = True
        if not return_index:
            index = None
        if not return_rois_num:
            nms_rois_num = None

        return output, nms_rois_num, index


@paddle.jit.not_to_static
def matrix_nms(bboxes,
               scores,
               score_threshold,
               post_threshold,
               nms_top_k,
               keep_top_k,
               use_gaussian=False,
               gaussian_sigma=2.,
               background_label=0,
               normalized=True,
               return_index=False,
               return_rois_num=True,
               name=None):
    """
    **Matrix NMS**
    This operator does matrix non maximum suppression (NMS).
    First selects a subset of candidate bounding boxes that have higher scores
    than score_threshold (if provided), then the top k candidate is selected if
    nms_top_k is larger than -1. Score of the remaining candidate are then
    decayed according to the Matrix NMS scheme.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.
    Args:
        bboxes (Tensor): A 3-D Tensor with shape [N, M, 4] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Tensor): A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes. The data type is float32 or float64.
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score.
        post_threshold (float): Threshold to filter out bounding boxes with
                                low confidence score AFTER decaying.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences after the filtering detections based
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        use_gaussian (bool): Use Gaussian as the decay function. Default: False
        gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        return_rois_num(bool): whether return rois_num. Default: True
        name(str): Name of the matrix nms op. Default: None.
    Returns:
        A tuple with three Tensor: (Out, Index, RoisNum) if return_index is True,
        otherwise, a tuple with two Tensor (Out, RoisNum) is returned.
        Out (Tensor): A 2-D Tensor with shape [No, 6] containing the
             detection results.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1})
        Index (Tensor): A 2-D Tensor with shape [No, 1] containing the
            selected indices, which are absolute values cross batches.
        rois_num (Tensor): A 1-D Tensor with shape [N] containing 
            the number of detected boxes in each image.
    Examples:
        .. code-block:: python
            import paddle
            from ppdet.modeling import ops
            boxes = paddle.static.data(name='bboxes', shape=[None,81, 4],
                                      dtype='float32', lod_level=1)
            scores = paddle.static.data(name='scores', shape=[None,81],
                                      dtype='float32', lod_level=1)
            out = ops.matrix_nms(bboxes=boxes, scores=scores, background_label=0,
                                 score_threshold=0.5, post_threshold=0.1,
                                 nms_top_k=400, keep_top_k=200, normalized=False)
    """
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'matrix_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'matrix_nms')
    check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
    check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
    check_type(normalized, 'normalized', bool, 'matrix_nms')
    check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
    check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
    check_type(background_label, 'background_label', int, 'matrix_nms')

W
wangguanzhong 已提交
504
    if in_dynamic_mode():
Q
qingqing01 已提交
505 506 507 508 509
        attrs = ('background_label', background_label, 'score_threshold',
                 score_threshold, 'post_threshold', post_threshold, 'nms_top_k',
                 nms_top_k, 'gaussian_sigma', gaussian_sigma, 'use_gaussian',
                 use_gaussian, 'keep_top_k', keep_top_k, 'normalized',
                 normalized)
W
wangguanzhong 已提交
510
        out, index, rois_num = _legacy_C_ops.matrix_nms(bboxes, scores, *attrs)
W
wangxinxin08 已提交
511 512 513 514 515
        if not return_index:
            index = None
        if not return_rois_num:
            rois_num = None
        return out, rois_num, index
Q
qingqing01 已提交
516 517 518
    else:
        helper = LayerHelper('matrix_nms', **locals())
        output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
W
wangguanzhong 已提交
519
        index = helper.create_variable_for_type_inference(dtype='int32')
Q
qingqing01 已提交
520 521
        outputs = {'Out': output, 'Index': index}
        if return_rois_num:
522
            rois_num = helper.create_variable_for_type_inference(dtype='int32')
Q
qingqing01 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
            outputs['RoisNum'] = rois_num

        helper.append_op(
            type="matrix_nms",
            inputs={'BBoxes': bboxes,
                    'Scores': scores},
            attrs={
                'background_label': background_label,
                'score_threshold': score_threshold,
                'post_threshold': post_threshold,
                'nms_top_k': nms_top_k,
                'gaussian_sigma': gaussian_sigma,
                'use_gaussian': use_gaussian,
                'keep_top_k': keep_top_k,
                'normalized': normalized
            },
            outputs=outputs)
        output.stop_gradient = True

W
wangxinxin08 已提交
542 543 544 545 546
        if not return_index:
            index = None
        if not return_rois_num:
            rois_num = None
        return output, rois_num, index
Q
qingqing01 已提交
547 548 549 550 551 552 553 554 555 556


@paddle.jit.not_to_static
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
              axis=0,
              name=None):
557
    r"""
Q
qingqing01 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
    **Box Coder Layer**
    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:
    .. math::
        ox = (tx - px) / pw / pxv
        oy = (ty - py) / ph / pyv
        ow = \log(\abs(tw / pw)) / pwv 
        oh = \log(\abs(th / ph)) / phv 
    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2
        oy = (ph * pyv * ty * + py) - th / 2
        ow = \exp(pwv * tw) * pw + tw / 2
        oh = \exp(phv * th) * ph + th / 2   
    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 
    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 

    Args:
        prior_box(Tensor): Box list prior_box is a 2-D Tensor with shape 
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system. 
            [xmax, ymax] is the right bottom coordinate of the anchor box.       
        prior_box_var(List|Tensor|None): prior_box_var supports three types 
            of input. One is Tensor with shape [M, 4] which holds M group and 
            data type is float32 or float64. The second is list consist of 
            4 elements shared by all boxes and data type is float32 or float64. 
            Other is None and not involved in calculation. 
        target_box(Tensor): This input can be a 2-D LoDTensor with shape 
            [N, 4] when code_type is 'encode_center_size'. This input also can 
            be a 3-D Tensor with shape [N, M, 4] when code_type is 
            'decode_center_size'. Each box is represented as 
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64. 
        code_type(str): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size` 
            by default.
        box_normalized(bool): Whether treat the priorbox as a normalized box.
            Set true by default.
        axis(int): Which axis in PriorBox to broadcast for box decode, 
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and 
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is 
            `decode_center_size`. Set 0 by default. 
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

    Returns:
        Tensor:
        output_box(Tensor): When code_type is 'encode_center_size', the 
        output tensor of box_coder_op with shape [N, M, 4] representing the 
        result of N target boxes encoded with M Prior boxes and variances. 
        When code_type is 'decode_center_size', N represents the batch size 
        and M represents the number of decoded boxes.

    Examples:
 
        .. code-block:: python
 
            import paddle
            from ppdet.modeling import ops
            paddle.enable_static()
            # For encode
            prior_box_encode = paddle.static.data(name='prior_box_encode',
                                  shape=[512, 4],
                                  dtype='float32')
            target_box_encode = paddle.static.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
            output_encode = ops.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
            prior_box_decode = paddle.static.data(name='prior_box_decode',
                                  shape=[512, 4],
                                  dtype='float32')
            target_box_decode = paddle.static.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
            output_decode = ops.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
    """
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_coder')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_coder')

W
wangguanzhong 已提交
661
    if in_dynamic_mode():
Q
qingqing01 已提交
662
        if isinstance(prior_box_var, Variable):
W
wangguanzhong 已提交
663
            output_box = _legacy_C_ops.box_coder(
Q
qingqing01 已提交
664 665 666 667
                prior_box, prior_box_var, target_box, "code_type", code_type,
                "box_normalized", box_normalized, "axis", axis)

        elif isinstance(prior_box_var, list):
W
wangguanzhong 已提交
668
            output_box = _legacy_C_ops.box_coder(
Q
qingqing01 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
                prior_box, None, target_box, "code_type", code_type,
                "box_normalized", box_normalized, "axis", axis, "variance",
                prior_box_var)
        else:
            raise TypeError(
                "Input variance of box_coder must be Variable or list")
        return output_box
    else:
        helper = LayerHelper("box_coder", **locals())

        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)

        inputs = {"PriorBox": prior_box, "TargetBox": target_box}
        attrs = {
            "code_type": code_type,
            "box_normalized": box_normalized,
            "axis": axis
        }
        if isinstance(prior_box_var, Variable):
            inputs['PriorBoxVar'] = prior_box_var
        elif isinstance(prior_box_var, list):
            attrs['variance'] = prior_box_var
        else:
            raise TypeError(
                "Input variance of box_coder must be Variable or list")
        helper.append_op(
            type="box_coder",
            inputs=inputs,
            attrs=attrs,
            outputs={"OutputBox": output_box})
        return output_box


def sigmoid_cross_entropy_with_logits(input,
                                      label,
                                      ignore_index=-100,
                                      normalize=False):
    output = F.binary_cross_entropy_with_logits(input, label, reduction='none')
    mask_tensor = paddle.cast(label != ignore_index, 'float32')
    output = paddle.multiply(output, mask_tensor)
    if normalize:
        sum_valid_mask = paddle.sum(mask_tensor)
        output = output / sum_valid_mask
    return output


def smooth_l1(input, label, inside_weight=None, outside_weight=None,
              sigma=None):
    input_new = paddle.multiply(input, inside_weight)
    label_new = paddle.multiply(label, inside_weight)
    delta = 1 / (sigma * sigma)
    out = F.smooth_l1_loss(input_new, label_new, reduction='none', delta=delta)
    out = paddle.multiply(out, outside_weight)
    out = out / delta
    out = paddle.reshape(out, shape=[out.shape[0], -1])
    out = paddle.sum(out, axis=1)
    return out
J
JYChen 已提交
727 728 729 730


def channel_shuffle(x, groups):
    batch_size, num_channels, height, width = x.shape[0:4]
W
will-jl944 已提交
731
    assert num_channels % groups == 0, 'num_channels should be divisible by groups'
J
JYChen 已提交
732 733 734 735 736 737
    channels_per_group = num_channels // groups
    x = paddle.reshape(
        x=x, shape=[batch_size, groups, channels_per_group, height, width])
    x = paddle.transpose(x=x, perm=[0, 2, 1, 3, 4])
    x = paddle.reshape(x=x, shape=[batch_size, num_channels, height, width])
    return x
S
shangliang Xu 已提交
738 739 740 741 742 743


def get_static_shape(tensor):
    shape = paddle.shape(tensor)
    shape.stop_gradient = True
    return shape