voc.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np

import xml.etree.ElementTree as ET

from ppdet.core.workspace import register, serializable

from .dataset import DataSet
G
Guanghua Yu 已提交
23 24
import logging
logger = logging.getLogger(__name__)
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57


@register
@serializable
class VOCDataSet(DataSet):
    """
    Load dataset with PascalVOC format.

    Notes:
    `anno_path` must contains xml file and image file path for annotations.

    Args:
        dataset_dir (str): root directory for dataset.
        image_dir (str): directory for images.
        anno_path (str): voc annotation file path.
        sample_num (int): number of samples to load, -1 means all.
        use_default_label (bool): whether use the default mapping of
            label to integer index. Default True.
        label_list (str): if use_default_label is False, will load
            mapping between category and class index.
    """

    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 sample_num=-1,
                 use_default_label=True,
                 label_list='label_list.txt'):
        super(VOCDataSet, self).__init__(
            image_dir=image_dir,
            anno_path=anno_path,
            sample_num=sample_num,
K
Kaipeng Deng 已提交
58
            dataset_dir=dataset_dir)
59 60 61 62 63 64 65 66
        # roidbs is list of dict whose structure is:
        # {
        #     'im_file': im_fname, # image file name
        #     'im_id': im_id, # image id
        #     'h': im_h, # height of image
        #     'w': im_w, # width
        #     'is_crowd': is_crowd,
        #     'gt_class': gt_class,
G
Guanghua Yu 已提交
67
        #     'gt_score': gt_score,
68
        #     'gt_bbox': gt_bbox,
G
Guanghua Yu 已提交
69
        #     'difficult': difficult
70 71 72 73
        # }
        self.roidbs = None
        # 'cname2id' is a dict to map category name to class id
        self.cname2cid = None
K
Kaipeng Deng 已提交
74
        self.use_default_label = use_default_label
75 76
        self.label_list = label_list

K
Kaipeng Deng 已提交
77
    def load_roidb_and_cname2cid(self, with_background=True):
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        # mapping category name to class id
        # if with_background is True:
        #   background:0, first_class:1, second_class:2, ...
        # if with_background is False:
        #   first_class:0, second_class:1, ...
        records = []
        ct = 0
        cname2cid = {}
        if not self.use_default_label:
            label_path = os.path.join(self.dataset_dir, self.label_list)
            if not os.path.exists(label_path):
                raise ValueError("label_list {} does not exists".format(
                    label_path))
            with open(label_path, 'r') as fr:
K
Kaipeng Deng 已提交
95
                label_id = int(with_background)
96 97 98 99
                for line in fr.readlines():
                    cname2cid[line.strip()] = label_id
                    label_id += 1
        else:
K
Kaipeng Deng 已提交
100
            cname2cid = pascalvoc_label(with_background)
101 102 103 104 105 106 107 108

        with open(anno_path, 'r') as fr:
            while True:
                line = fr.readline()
                if not line:
                    break
                img_file, xml_file = [os.path.join(image_dir, x) \
                        for x in line.strip().split()[:2]]
W
wangguanzhong 已提交
109 110 111 112 113
                if not os.path.exists(img_file):
                    logger.warn(
                        'Illegal image file: {}, and it will be ignored'.format(
                            img_file))
                    continue
114
                if not os.path.isfile(xml_file):
W
wangguanzhong 已提交
115 116
                    logger.warn('Illegal xml file: {}, and it will be ignored'.
                                format(xml_file))
117 118 119 120 121 122 123 124 125 126
                    continue
                tree = ET.parse(xml_file)
                if tree.find('id') is None:
                    im_id = np.array([ct])
                else:
                    im_id = np.array([int(tree.find('id').text)])

                objs = tree.findall('object')
                im_w = float(tree.find('size').find('width').text)
                im_h = float(tree.find('size').find('height').text)
W
wangguanzhong 已提交
127 128 129 130 131 132 133 134 135 136
                if im_w < 0 or im_h < 0:
                    logger.warn(
                        'Illegal width: {} or height: {} in annotation, '
                        'and {} will be ignored'.format(im_w, im_h, xml_file))
                    continue
                gt_bbox = []
                gt_class = []
                gt_score = []
                is_crowd = []
                difficult = []
137 138 139 140 141 142 143 144 145 146 147
                for i, obj in enumerate(objs):
                    cname = obj.find('name').text
                    _difficult = int(obj.find('difficult').text)
                    x1 = float(obj.find('bndbox').find('xmin').text)
                    y1 = float(obj.find('bndbox').find('ymin').text)
                    x2 = float(obj.find('bndbox').find('xmax').text)
                    y2 = float(obj.find('bndbox').find('ymax').text)
                    x1 = max(0, x1)
                    y1 = max(0, y1)
                    x2 = min(im_w - 1, x2)
                    y2 = min(im_h - 1, y2)
W
wangguanzhong 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
                    if x2 > x1 and y2 > y1:
                        gt_bbox.append([x1, y1, x2, y2])
                        gt_class.append([cname2cid[cname]])
                        gt_score.append([1.])
                        is_crowd.append([0])
                        difficult.append([_difficult])
                    else:
                        logger.warn(
                            'Found an invalid bbox in annotations: xml_file: {}'
                            ', x1: {}, y1: {}, x2: {}, y2: {}.'.format(
                                xml_file, x1, y1, x2, y2))
                gt_bbox = np.array(gt_bbox).astype('float32')
                gt_class = np.array(gt_class).astype('int32')
                gt_score = np.array(gt_score).astype('float32')
                is_crowd = np.array(is_crowd).astype('int32')
                difficult = np.array(difficult).astype('int32')
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
                voc_rec = {
                    'im_file': img_file,
                    'im_id': im_id,
                    'h': im_h,
                    'w': im_w,
                    'is_crowd': is_crowd,
                    'gt_class': gt_class,
                    'gt_score': gt_score,
                    'gt_bbox': gt_bbox,
                    'difficult': difficult
                }
                if len(objs) != 0:
                    records.append(voc_rec)

                ct += 1
                if self.sample_num > 0 and ct >= self.sample_num:
                    break
        assert len(records) > 0, 'not found any voc record in %s' % (
            self.anno_path)
Y
Yang Zhang 已提交
183
        logger.debug('{} samples in file {}'.format(ct, anno_path))
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        self.roidbs, self.cname2cid = records, cname2cid


def pascalvoc_label(with_background=True):
    labels_map = {
        'aeroplane': 1,
        'bicycle': 2,
        'bird': 3,
        'boat': 4,
        'bottle': 5,
        'bus': 6,
        'car': 7,
        'cat': 8,
        'chair': 9,
        'cow': 10,
        'diningtable': 11,
        'dog': 12,
        'horse': 13,
        'motorbike': 14,
        'person': 15,
        'pottedplant': 16,
        'sheep': 17,
        'sofa': 18,
        'train': 19,
        'tvmonitor': 20
    }
    if not with_background:
        labels_map = {k: v - 1 for k, v in labels_map.items()}
    return labels_map