voc.py 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np

import xml.etree.ElementTree as ET

from ppdet.core.workspace import register, serializable

from .dataset import DataSet
G
Guanghua Yu 已提交
23 24
import logging
logger = logging.getLogger(__name__)
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70


@register
@serializable
class VOCDataSet(DataSet):
    """
    Load dataset with PascalVOC format.

    Notes:
    `anno_path` must contains xml file and image file path for annotations.

    Args:
        dataset_dir (str): root directory for dataset.
        image_dir (str): directory for images.
        anno_path (str): voc annotation file path.
        sample_num (int): number of samples to load, -1 means all.
        use_default_label (bool): whether use the default mapping of
            label to integer index. Default True.
        with_background (bool): whether load background as a class,
            default True.
        label_list (str): if use_default_label is False, will load
            mapping between category and class index.
    """

    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 sample_num=-1,
                 use_default_label=True,
                 with_background=True,
                 label_list='label_list.txt'):
        super(VOCDataSet, self).__init__(
            image_dir=image_dir,
            anno_path=anno_path,
            sample_num=sample_num,
            dataset_dir=dataset_dir,
            with_background=with_background)
        # roidbs is list of dict whose structure is:
        # {
        #     'im_file': im_fname, # image file name
        #     'im_id': im_id, # image id
        #     'h': im_h, # height of image
        #     'w': im_w, # width
        #     'is_crowd': is_crowd,
        #     'gt_class': gt_class,
G
Guanghua Yu 已提交
71
        #     'gt_score': gt_score,
72
        #     'gt_bbox': gt_bbox,
G
Guanghua Yu 已提交
73
        #     'difficult': difficult
74 75 76 77
        # }
        self.roidbs = None
        # 'cname2id' is a dict to map category name to class id
        self.cname2cid = None
K
Kaipeng Deng 已提交
78
        self.use_default_label = use_default_label
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        self.label_list = label_list

    def load_roidb_and_cname2cid(self):
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        # mapping category name to class id
        # if with_background is True:
        #   background:0, first_class:1, second_class:2, ...
        # if with_background is False:
        #   first_class:0, second_class:1, ...
        records = []
        ct = 0
        cname2cid = {}
        if not self.use_default_label:
            label_path = os.path.join(self.dataset_dir, self.label_list)
            if not os.path.exists(label_path):
                raise ValueError("label_list {} does not exists".format(
                    label_path))
            with open(label_path, 'r') as fr:
                label_id = int(self.with_background)
                for line in fr.readlines():
                    cname2cid[line.strip()] = label_id
                    label_id += 1
        else:
            cname2cid = pascalvoc_label(self.with_background)

        with open(anno_path, 'r') as fr:
            while True:
                line = fr.readline()
                if not line:
                    break
                img_file, xml_file = [os.path.join(image_dir, x) \
                        for x in line.strip().split()[:2]]
W
wangguanzhong 已提交
113 114 115 116 117
                if not os.path.exists(img_file):
                    logger.warn(
                        'Illegal image file: {}, and it will be ignored'.format(
                            img_file))
                    continue
118
                if not os.path.isfile(xml_file):
W
wangguanzhong 已提交
119 120
                    logger.warn('Illegal xml file: {}, and it will be ignored'.
                                format(xml_file))
121 122 123 124 125 126 127 128 129 130
                    continue
                tree = ET.parse(xml_file)
                if tree.find('id') is None:
                    im_id = np.array([ct])
                else:
                    im_id = np.array([int(tree.find('id').text)])

                objs = tree.findall('object')
                im_w = float(tree.find('size').find('width').text)
                im_h = float(tree.find('size').find('height').text)
W
wangguanzhong 已提交
131 132 133 134 135 136 137 138 139 140
                if im_w < 0 or im_h < 0:
                    logger.warn(
                        'Illegal width: {} or height: {} in annotation, '
                        'and {} will be ignored'.format(im_w, im_h, xml_file))
                    continue
                gt_bbox = []
                gt_class = []
                gt_score = []
                is_crowd = []
                difficult = []
141 142 143 144 145 146 147 148 149 150 151
                for i, obj in enumerate(objs):
                    cname = obj.find('name').text
                    _difficult = int(obj.find('difficult').text)
                    x1 = float(obj.find('bndbox').find('xmin').text)
                    y1 = float(obj.find('bndbox').find('ymin').text)
                    x2 = float(obj.find('bndbox').find('xmax').text)
                    y2 = float(obj.find('bndbox').find('ymax').text)
                    x1 = max(0, x1)
                    y1 = max(0, y1)
                    x2 = min(im_w - 1, x2)
                    y2 = min(im_h - 1, y2)
W
wangguanzhong 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
                    if x2 > x1 and y2 > y1:
                        gt_bbox.append([x1, y1, x2, y2])
                        gt_class.append([cname2cid[cname]])
                        gt_score.append([1.])
                        is_crowd.append([0])
                        difficult.append([_difficult])
                    else:
                        logger.warn(
                            'Found an invalid bbox in annotations: xml_file: {}'
                            ', x1: {}, y1: {}, x2: {}, y2: {}.'.format(
                                xml_file, x1, y1, x2, y2))
                gt_bbox = np.array(gt_bbox).astype('float32')
                gt_class = np.array(gt_class).astype('int32')
                gt_score = np.array(gt_score).astype('float32')
                is_crowd = np.array(is_crowd).astype('int32')
                difficult = np.array(difficult).astype('int32')
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
                voc_rec = {
                    'im_file': img_file,
                    'im_id': im_id,
                    'h': im_h,
                    'w': im_w,
                    'is_crowd': is_crowd,
                    'gt_class': gt_class,
                    'gt_score': gt_score,
                    'gt_bbox': gt_bbox,
                    'difficult': difficult
                }
                if len(objs) != 0:
                    records.append(voc_rec)

                ct += 1
                if self.sample_num > 0 and ct >= self.sample_num:
                    break
        assert len(records) > 0, 'not found any voc record in %s' % (
            self.anno_path)
Y
Yang Zhang 已提交
187
        logger.debug('{} samples in file {}'.format(ct, anno_path))
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        self.roidbs, self.cname2cid = records, cname2cid


def pascalvoc_label(with_background=True):
    labels_map = {
        'aeroplane': 1,
        'bicycle': 2,
        'bird': 3,
        'boat': 4,
        'bottle': 5,
        'bus': 6,
        'car': 7,
        'cat': 8,
        'chair': 9,
        'cow': 10,
        'diningtable': 11,
        'dog': 12,
        'horse': 13,
        'motorbike': 14,
        'person': 15,
        'pottedplant': 16,
        'sheep': 17,
        'sofa': 18,
        'train': 19,
        'tvmonitor': 20
    }
    if not with_background:
        labels_map = {k: v - 1 for k, v in labels_map.items()}
    return labels_map