io.py 24.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
fengjiayi 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
Yu Yang 已提交
16
from .. import core
T
typhoonzero 已提交
17
from ..framework import convert_np_dtype_to_dtype_, default_main_program, default_startup_program, Program
Y
Yu Yang 已提交
18
from ..unique_name import generate as unique_name
T
WIP  
typhoonzero 已提交
19 20
from control_flow import BlockGuard
from ..layer_helper import LayerHelper
Y
Refine  
Yu Yang 已提交
21
from ..executor import global_scope
Y
yuyang18 已提交
22
from layer_function_generator import generate_layer_fn, templatedoc
Y
Yu Yang 已提交
23

Y
Yu Yang 已提交
24 25
__all__ = [
    'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'open_recordio_file',
F
fengjiayi 已提交
26
    'open_files', 'read_file', 'shuffle', 'batch', 'double_buffer',
Y
yuyang18 已提交
27
    'random_data_generator', 'Preprocessor', 'load'
Y
Yu Yang 已提交
28
]
Y
Yu Yang 已提交
29 30 31 32 33 34 35 36 37 38


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
39
    **Data Layer**
Y
Yu Yang 已提交
40

K
kavyasrinet 已提交
41
    This function takes in the input and based on whether data has
C
caoying03 已提交
42
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
43
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
44
    following operators in the graph.
Y
Yu Yang 已提交
45 46 47 48

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
       append_batch_size(bool): Whether or not to append the data as a batch.
       dtype(int|float): The type of data : float32, float_16, int etc
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
78
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
79 80 81 82 83
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
84 85
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
86
    return data_var
T
typhoonzero 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
112 113 114 115 116 117 118 119 120 121
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
    
Y
update  
yi.wu 已提交
122 123 124
    Returns:
        None

Y
yi.wu 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    Examples:
        .. code-block:: python

            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
140 141
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
142 143
    """

Y
Yancey1989 已提交
144
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
145
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
146
        self.inputs = inputs
T
typhoonzero 已提交
147 148 149
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
150 151
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
152
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
166 167 168 169 170 171 172 173
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
174 175
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
176 177 178

        return params, grads

T
typhoonzero 已提交
179 180 181 182 183 184 185
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
186 187 188 189
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
T
typhoonzero 已提交
190
        empty_block = Program().global_block()
T
typhoonzero 已提交
191 192

        parent_block.append_op(
193
            type='listen_and_serv',
Y
Yancey1989 已提交
194
            inputs={"X": self.inputs},
T
typhoonzero 已提交
195 196 197 198
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
T
typhoonzero 已提交
199
                'OptimizeBlock': current_block,
200 201
                'PrefetchBlock': empty_block,
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
202
                'grad_to_block_id': [""]
T
typhoonzero 已提交
203 204 205
            })


T
typhoonzero 已提交
206
def Send(endpoints, send_vars, get_vars=None):
T
typhoonzero 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    """
    Send layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)

    epmap = endpoints.split(",")
T
typhoonzero 已提交
222
    endpoints = list(set(epmap))
T
typhoonzero 已提交
223 224

    helper = LayerHelper("Send", **locals())
T
typhoonzero 已提交
225 226 227 228 229
    if not get_vars:
        get_vars = []
        for s in send_vars:
            v = helper.create_tmp_variable(dtype=s.dtype, stop_gradient=True)
            get_vars.append(v)
Y
Yancey1989 已提交
230
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
231

T
typhoonzero 已提交
232 233 234
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
Y
Yancey1989 已提交
235 236 237 238 239 240 241
        outputs={"Out": get_vars},
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })

T
typhoonzero 已提交
242
    return get_vars
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270


def Recv(endpoints, get_vars):
    """
    Recv layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
        inputs={"X": get_vars},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
Yu Yang 已提交
271 272


Y
Refine  
Yu Yang 已提交
273 274 275 276 277 278 279 280 281 282
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
283 284
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
285 286 287
    return reader


Y
Yu Yang 已提交
288 289 290 291 292
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
    new_var.persistable = True
F
fengjiayi 已提交
293 294 295 296
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
313
    new_op = block.append_op(
F
fengjiayi 已提交
314 315 316
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
317
        attrs=op.all_attrs())
F
fengjiayi 已提交
318
    return new_op
Y
Yu Yang 已提交
319 320


F
fengjiayi 已提交
321 322 323 324 325
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
F
fengjiayi 已提交
326
                       for_parallel=True):
F
fengjiayi 已提交
327 328 329 330 331 332 333 334 335 336 337
    """
    Open a RecordIO file

    This layer takes a RecordIO file to read from and returns a Reader Variable.
    Via the Reader Variable, we can get data from the given RecordIO file.

    Args:
       filename(str): The RecordIO file's name.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
F
fengjiayi 已提交
338
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable via which we can get RecordIO file data.

    Examples:
       .. code-block:: python

         reader = fluid.layers.io.open_recordio_file(
                                          filename='./data.recordio',
                                          shapes=[(3,224,224), (1)],
                                          lod_levels=[0, 0],
                                          dtypes=['float32', 'int64'])

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
355
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
356
    """
Y
Yu Yang 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
F
fengjiayi 已提交
381 382
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
383 384 385 386 387

    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)

    if for_parallel:
J
JiayiFeng 已提交
388
        main_prog_var = parallel(reader=main_prog_var)
F
fengjiayi 已提交
389

F
fengjiayi 已提交
390
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
391 392


F
fengjiayi 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
    Instead of opening a file and reading data from it, this 
    Reader Variable generates float uniform random data by itself. 
    It can be used as a dummy reader to test a network without 
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:
       .. code-block:: python

         reader = fluid.layers.io.random_data_generator(
                                          low=0.0,
                                          high=1.0,
                                          shapes=[(3,224,224), (1)],
                                          lod_levels=[0, 0])

         # Via the reader, we can use 'read_file' layer to get data:
         image, label = fluid.layers.io.read_file(reader)
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    if for_parallel:
        main_prog_var = parallel(reader=main_prog_var)

    return monkey_patch_reader_methods(main_prog_var)


460 461 462 463
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
Y
yi.wu 已提交
464
               thread_num=1,
F
fengjiayi 已提交
465 466
               buffer_size=None,
               pass_num=1,
F
fengjiayi 已提交
467
               for_parallel=True):
F
fengjiayi 已提交
468 469 470
    """
    Open files

F
fengjiayi 已提交
471 472 473
    This layer takes a list of files to read from and returns a Reader Variable. 
    Via the Reader Variable, we can get data from given files. All files must 
    have name suffixs to indicate their formats, e.g., '*.recordio'. 
F
fengjiayi 已提交
474 475 476 477 478 479 480 481

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
       thread_num(int): The maximal concurrent prefetch thread number.
       buffer_size(int): The size of prefetch buffer.
F
fengjiayi 已提交
482
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
483 484
       for_parallel(Bool): Set it as True if you are going to run 
            subsequent operators in parallel.
F
fengjiayi 已提交
485 486 487 488 489 490 491

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

F
fengjiayi 已提交
492
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
493
                                                     './data2.recordio'],
F
fengjiayi 已提交
494 495 496 497 498
                                             shapes=[(3,224,224), (1)],
                                             lod_levels=[0, 0],
                                             dtypes=['float32', 'int64'],
                                             thread_num=2,
                                             buffer_size=2)
F
fengjiayi 已提交
499 500

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
501
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
502
    """
503 504
    if buffer_size is None:
        buffer_size = thread_num
F
fengjiayi 已提交
505 506
    if isinstance(filenames, basestring):
        filenames = [filenames]
F
fengjiayi 已提交
507 508 509 510 511 512 513 514
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
515
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
516
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
517
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
F
fengjiayi 已提交
518 519
    startup_blk.append_op(
        type='open_files',
F
fengjiayi 已提交
520
        outputs={'Out': [startup_reader]},
F
fengjiayi 已提交
521 522 523 524
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks,
F
fengjiayi 已提交
525
            'file_names': filenames,
526 527
            'thread_num': thread_num,
            'buffer_size': buffer_size
F
fengjiayi 已提交
528 529
        })

F
fengjiayi 已提交
530 531 532 533 534 535 536
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
537

F
fengjiayi 已提交
538
    if for_parallel:
J
JiayiFeng 已提交
539
        main_prog_reader = parallel(reader=main_prog_reader)
F
fengjiayi 已提交
540

F
fengjiayi 已提交
541 542 543
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
544
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
545 546 547
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
548
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
549 550 551 552 553
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
554 555 556 557
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
558 559


560 561
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
562 563 564 565 566 567 568 569 570 571
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
572
def shuffle(reader, buffer_size):
573 574
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
575 576


J
JiayiFeng 已提交
577 578 579 580 581
def batch(reader, batch_size):
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


582
def double_buffer(reader, place=None, name=None):
Y
Yu Yang 已提交
583 584 585
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
586 587
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
588 589


F
fengjiayi 已提交
590
def multi_pass(reader, pass_num):
591 592
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
593 594


J
JiayiFeng 已提交
595
def parallel(reader):
J
JiayiFeng 已提交
596 597
    return __create_shared_decorated_reader__('create_threaded_reader', reader,
                                              {})
F
fengjiayi 已提交
598 599


Y
Yu Yang 已提交
600 601 602 603 604
def read_file(file_obj):
    helper = LayerHelper('read_file')
    out = [
        helper.create_tmp_variable(
            stop_gradient=True, dtype='float32')
Y
Yu Yang 已提交
605
        for _ in range(len(file_obj.desc.shapes()))
Y
Yu Yang 已提交
606 607 608 609 610 611 612
    ]
    helper.append_op(
        type='read', inputs={'Reader': [file_obj]}, outputs={'Out': out})
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657


class Preprocessor(object):
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

    def is_completed(self):
        return self.sub_block and self.source_var_names and self.sink_var_names

    @contextlib.contextmanager
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
        self.sub_block = self.main_prog.create_block()
        yield
        self.main_prog.rollback()
        self.status = Preprocessor.AFTER_SUB_BLOCK
        if not self.is_completed():
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
658 659 660 661
        self.source_var_names = [
            unique_name("preprocessor_source")
            for _ in xrange(len(source_shapes))
        ]
F
fengjiayi 已提交
662
        source_vars = []
F
fengjiayi 已提交
663 664 665
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
666
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
667
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)
Y
yuyang18 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717


@templatedoc()
def load(out, file_path, load_as_fp16=None):
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
    >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")

    Args:
        out(${out_type}): ${out_comment}.

        file_path(${file_path_type}): ${file_path_comment}.

        load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.

    Returns:
        None
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
    helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)