Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
47630a4a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
47630a4a
编写于
6月 01, 2018
作者:
Y
yi.wu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fluid benchmark support recordio reader
上级
86d8659c
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
241 addition
and
27 deletion
+241
-27
benchmark/fluid/Dockerfile
benchmark/fluid/Dockerfile
+1
-1
benchmark/fluid/README.md
benchmark/fluid/README.md
+9
-0
benchmark/fluid/fluid_benchmark.py
benchmark/fluid/fluid_benchmark.py
+38
-17
benchmark/fluid/models/machine_translation.py
benchmark/fluid/models/machine_translation.py
+2
-0
benchmark/fluid/models/mnist.py
benchmark/fluid/models/mnist.py
+18
-3
benchmark/fluid/models/resnet.py
benchmark/fluid/models/resnet.py
+18
-2
benchmark/fluid/models/stacked_dynamic_lstm.py
benchmark/fluid/models/stacked_dynamic_lstm.py
+3
-0
benchmark/fluid/models/vgg.py
benchmark/fluid/models/vgg.py
+18
-3
benchmark/fluid/recordio_converter.py
benchmark/fluid/recordio_converter.py
+133
-0
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+1
-1
未找到文件。
benchmark/fluid/Dockerfile
浏览文件 @
47630a4a
...
...
@@ -19,4 +19,4 @@ ADD *.whl /
RUN
pip
install
/
*
.whl
&&
rm
-f
/
*
.whl
&&
chmod
+x /usr/bin/paddle_k8s
ENV
LD_LIBRARY_PATH=/usr/local/lib
ADD
fluid_benchmark.py
dataset
.py models/ /workspace/
ADD
fluid_benchmark.py
recordio_converter
.py models/ /workspace/
benchmark/fluid/README.md
浏览文件 @
47630a4a
...
...
@@ -42,6 +42,15 @@ Currently supported `--model` argument include:
PADDLE_PSERVER_PORT
=
7164
PADDLE_TRAINER_IPS
=
192.168.0.2,192.168.0.3
PADDLE_CURRENT_IP
=
127.0.0.1
PADDLE_TRAINER_ID
=
0 python fluid_benchmark.py
--model
mnist
--device
GPU
--update_method
nccl2
```
## Prepare the RecordIO file to Achieve Better Performance
Run the following command will generate RecordIO files like "mnist.recordio" under the path
and batch_size you choose:
```
bash
python
-c
'from recordio_converter import *; prepare_mnist("data", 32)'
```
## Run Distributed Benchmark on Kubernetes Cluster
You may need to build a Docker image before submitting a cluster job onto Kubernetes, or you will
...
...
benchmark/fluid/fluid_benchmark.py
浏览文件 @
47630a4a
...
...
@@ -44,7 +44,6 @@ def parse_args():
type
=
float
,
default
=
0.001
,
help
=
'The minibatch size.'
)
# TODO(wuyi): add "--use_fake_data" option back.
parser
.
add_argument
(
'--skip_batch_num'
,
type
=
int
,
...
...
@@ -106,6 +105,16 @@ def parse_args():
default
=
'local'
,
choices
=
[
'local'
,
'pserver'
,
'nccl2'
],
help
=
'Choose parameter update method, can be local, pserver, nccl2.'
)
parser
.
add_argument
(
'--use_reader_op'
,
action
=
'store_true'
,
help
=
'Whether to use reader op, and must specify the data path if set this to true.'
)
parser
.
add_argument
(
'--data_path'
,
type
=
str
,
default
=
""
,
help
=
'Directory that contains all the training recordio files.'
)
args
=
parser
.
parse_args
()
return
args
...
...
@@ -208,11 +217,13 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
place
=
core
.
CPUPlace
()
if
args
.
device
==
'CPU'
else
core
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
feed_var_list
=
[
var
for
var
in
train_prog
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
]
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
if
not
args
.
use_reader_op
:
feed_var_list
=
[
var
for
var
in
train_prog
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
]
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
iters
,
num_samples
,
start_time
=
0
,
0
,
time
.
time
()
for
pass_id
in
range
(
args
.
pass_num
):
...
...
@@ -223,9 +234,12 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
num_samples
=
0
if
iters
==
args
.
iterations
:
break
loss
=
exe
.
run
(
train_prog
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_loss
])
if
args
.
use_reader_op
:
loss
=
exe
.
run
(
train_prog
,
fetch_list
=
[
avg_loss
])
else
:
loss
=
exe
.
run
(
train_prog
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_loss
])
iters
+=
1
num_samples
+=
len
(
data
)
train_losses
.
append
(
loss
)
...
...
@@ -251,10 +265,14 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
def
train_parallel
(
avg_loss
,
infer_prog
,
optimizer
,
train_reader
,
test_reader
,
batch_acc
,
args
,
train_prog
,
startup_prog
,
nccl_id_var
,
num_trainers
,
trainer_id
):
feed_var_list
=
[
var
for
var
in
train_prog
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
]
place
=
core
.
CPUPlace
()
if
args
.
device
==
'CPU'
else
core
.
CUDAPlace
(
0
)
if
not
args
.
use_reader_op
:
feed_var_list
=
[
var
for
var
in
train_prog
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
]
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
# generate fake:
if
args
.
use_fake_data
:
for
var
in
feed_var_list
:
...
...
@@ -271,7 +289,6 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
"value"
:
1.0
,
"dtype"
:
var
.
dtype
})
place
=
core
.
CPUPlace
()
if
args
.
device
==
'CPU'
else
core
.
CUDAPlace
(
0
)
if
nccl_id_var
and
trainer_id
==
0
:
#FIXME(wuyi): wait other trainer to start listening
time
.
sleep
(
30
)
...
...
@@ -288,7 +305,6 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
num_trainers
=
num_trainers
,
trainer_id
=
trainer_id
)
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
for
pass_id
in
range
(
args
.
pass_num
):
num_samples
=
0
iters
=
0
...
...
@@ -304,7 +320,10 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
num_samples
=
0
if
iters
==
args
.
iterations
:
break
if
args
.
use_fake_data
:
# NOTE: if use reader ops, the input data is not splited to multiple cards
if
args
.
use_reader_op
and
iters
>=
args
.
iterations
/
args
.
gpus
:
break
if
args
.
use_fake_data
or
args
.
use_reader_op
:
loss
,
=
exe
.
run
([
avg_loss
.
name
])
else
:
loss
,
=
exe
.
run
([
avg_loss
.
name
],
feed
=
feeder
.
feed
(
data
))
...
...
@@ -316,6 +335,8 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
print
(
"Pass %d, batch %d, loss %s"
%
(
pass_id
,
batch_id
,
np
.
array
(
loss
)))
train_elapsed
=
time
.
time
()
-
start_time
if
args
.
use_reader_op
:
num_samples
=
num_samples
*
args
.
gpus
examples_per_sec
=
num_samples
/
train_elapsed
print
(
'
\n
Total examples: %d, total time: %.5f, %.5f examples/sed
\n
'
%
(
num_samples
,
train_elapsed
,
examples_per_sec
))
...
...
@@ -342,7 +363,7 @@ def main():
# the unique trainer id, starting from 0, needed by trainer
# only
nccl_id_var
,
num_trainers
,
trainer_id
=
(
None
,
1
,
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
"
-1
"
)))
None
,
1
,
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
"
0
"
)))
if
args
.
use_cprof
:
pr
=
cProfile
.
Profile
()
...
...
benchmark/fluid/models/machine_translation.py
浏览文件 @
47630a4a
...
...
@@ -197,6 +197,8 @@ def lodtensor_to_ndarray(lod_tensor):
def
get_model
(
args
):
if
args
.
use_reader_op
:
raise
Exception
(
"machine_translation do not support reader op for now."
)
embedding_dim
=
512
encoder_size
=
512
decoder_size
=
512
...
...
benchmark/fluid/models/mnist.py
浏览文件 @
47630a4a
...
...
@@ -20,6 +20,7 @@ import numpy as np
import
argparse
import
time
import
cProfile
import
os
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -65,9 +66,23 @@ def cnn_model(data):
def
get_model
(
args
):
# Input data
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
if
args
.
use_reader_op
:
filelist
=
[
os
.
path
.
join
(
args
.
data_path
,
f
)
for
f
in
os
.
listdir
(
args
.
data_path
)
]
data_file
=
fluid
.
layers
.
open_files
(
filenames
=
filelist
,
shapes
=
[[
-
1
,
1
,
28
,
28
],
(
-
1
,
1
)],
lod_levels
=
[
0
,
0
],
dtypes
=
[
"float32"
,
"int64"
],
thread_num
=
args
.
gpus
)
data_file
=
fluid
.
layers
.
double_buffer
(
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
images
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
else
:
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# Train program
predict
=
cnn_model
(
images
)
...
...
benchmark/fluid/models/resnet.py
浏览文件 @
47630a4a
...
...
@@ -19,6 +19,7 @@ from __future__ import print_function
import
functools
import
numpy
as
np
import
time
import
os
import
cProfile
,
pstats
,
StringIO
...
...
@@ -129,9 +130,24 @@ def get_model(args):
else
:
dshape
=
[
224
,
224
,
3
]
model
=
resnet_imagenet
if
args
.
use_reader_op
:
filelist
=
[
os
.
path
.
join
(
args
.
data_path
,
f
)
for
f
in
os
.
listdir
(
args
.
data_path
)
]
data_file
=
fluid
.
layers
.
open_files
(
filenames
=
filelist
,
shapes
=
[[
-
1
]
+
dshape
,
(
-
1
,
1
)],
lod_levels
=
[
0
,
0
],
dtypes
=
[
"float32"
,
"int64"
],
thread_num
=
args
.
gpus
)
data_file
=
fluid
.
layers
.
double_buffer
(
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
input
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
else
:
input
=
fluid
.
layers
.
data
(
name
=
'data'
,
shape
=
dshape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
input
=
fluid
.
layers
.
data
(
name
=
'data'
,
shape
=
dshape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
predict
=
model
(
input
,
class_dim
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
...
...
benchmark/fluid/models/stacked_dynamic_lstm.py
浏览文件 @
47630a4a
...
...
@@ -44,6 +44,9 @@ def crop_sentence(reader, crop_size):
def
get_model
(
args
):
if
args
.
use_reader_op
:
raise
Exception
(
"stacked_dynamic_lstm do not support reader op for now."
)
lstm_size
=
512
emb_dim
=
512
crop_size
=
1500
...
...
benchmark/fluid/models/vgg.py
浏览文件 @
47630a4a
...
...
@@ -22,6 +22,7 @@ import paddle.fluid as fluid
import
paddle.fluid.core
as
core
import
argparse
import
functools
import
os
def
vgg16_bn_drop
(
input
):
...
...
@@ -65,9 +66,23 @@ def get_model(args):
else
:
data_shape
=
[
224
,
224
,
3
]
# Input data
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
if
args
.
use_reader_op
:
filelist
=
[
os
.
path
.
join
(
args
.
data_path
,
f
)
for
f
in
os
.
listdir
(
args
.
data_path
)
]
data_file
=
fluid
.
layers
.
open_files
(
filenames
=
filelist
,
shapes
=
[[
-
1
]
+
data_shape
,
(
-
1
,
1
)],
lod_levels
=
[
0
,
0
],
dtypes
=
[
"float32"
,
"int64"
],
thread_num
=
args
.
gpus
)
data_file
=
fluid
.
layers
.
double_buffer
(
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
images
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
else
:
images
=
fluid
.
layers
.
data
(
name
=
'data'
,
shape
=
dshape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# Train program
net
=
vgg16_bn_drop
(
images
)
...
...
benchmark/fluid/recordio_converter.py
0 → 100644
浏览文件 @
47630a4a
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.dataset
import
mnist
,
cifar
,
flowers
,
image
def
convert_2_recordio
(
py_reader
,
outfilepath
,
batch_size
,
shape_data
,
shape_label
):
num_batches
=
0
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
reader
=
paddle
.
batch
(
py_reader
(),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
# order is image and label
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
shape_data
),
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
shape_label
,
dtype
=
'int64'
),
],
place
=
fluid
.
CPUPlace
())
num_batches
=
fluid
.
recordio_writer
.
convert_reader_to_recordio_file
(
outfilepath
,
reader
,
feeder
)
return
num_batches
def
prepare_mnist
(
outpath
,
batch_size
):
outfilepath
=
os
.
path
.
join
(
outpath
,
"mnist.recordio"
)
convert_2_recordio
(
mnist
.
train
,
outfilepath
,
batch_size
,
[
784
],
[
1
])
def
prepare_cifar10
(
outpath
,
batch_size
):
outfilepath
=
os
.
path
.
join
(
outpath
,
"cifar.recordio"
)
convert_2_recordio
(
cifar
.
train10
,
outfilepath
,
batch_size
,
[
3
,
32
,
32
],
[
1
])
def
prepare_flowers
(
outpath
,
batch_size
):
outfilepath
=
os
.
path
.
join
(
outpath
,
"flowers.recordio"
)
convert_2_recordio
(
flowers
.
train
,
outfilepath
,
batch_size
,
[
3
,
224
,
224
],
[
1
])
def
imagenet_train
(
data_dir
):
contents
=
os
.
listdir
(
data_dir
)
if
set
(
contents
)
!=
set
(
[
"train"
,
"train.txt"
,
"val"
,
"val_set"
,
"val.txt"
,
"unzip.sh"
]):
raise
Exception
(
"Imagenet data contents error!"
)
img2label
=
dict
()
imgfilelist
=
[]
with
open
(
os
.
path
.
join
(
data_dir
,
"train.txt"
))
as
fn
:
while
1
:
l
=
fn
.
readline
()
if
not
l
:
break
img
,
lbl
=
l
[:
-
1
].
split
(
" "
)
img2label
[
img
]
=
int
(
lbl
)
imgfilelist
.
append
(
img
)
def
train_reader
():
for
idx
,
imgfile
in
enumerate
(
imgfilelist
):
data
=
image
.
load_image
(
os
.
path
.
join
(
data_dir
,
"train"
,
imgfile
.
lower
()))
label
=
[
img2label
[
imgfile
],
]
yield
[
data
,
label
]
def
default_mapper
(
sample
):
img
,
label
=
sample
img
=
image
.
simple_transform
(
img
,
256
,
224
,
True
,
mean
=
[
103.94
,
116.78
,
123.68
])
return
img
.
flatten
().
astype
(
'float32'
),
label
return
paddle
.
reader
.
map_readers
(
default_mapper
,
train_reader
)
# FIXME(wuyi): delete this when https://github.com/PaddlePaddle/Paddle/pull/11066 is merged
def
convert_reader_to_recordio_files
(
filename
,
batch_per_file
,
reader_creator
,
feeder
,
compressor
=
core
.
RecordIOWriter
.
Compressor
.
Snappy
,
max_num_records
=
1000
,
feed_order
=
None
):
if
feed_order
is
None
:
feed_order
=
feeder
.
feed_names
f_name
,
f_ext
=
os
.
path
.
splitext
(
filename
)
assert
(
f_ext
==
".recordio"
)
lines
=
[]
f_idx
=
0
counter
=
0
for
idx
,
batch
in
enumerate
(
reader_creator
()):
lines
.
append
(
batch
)
if
idx
>=
batch_per_file
and
idx
%
batch_per_file
==
0
:
filename
=
"%s-%05d%s"
%
(
f_name
,
f_idx
,
f_ext
)
with
fluid
.
recordio_writer
.
create_recordio_writer
(
filename
,
compressor
,
max_num_records
)
as
writer
:
for
l
in
lines
:
res
=
feeder
.
feed
(
l
)
for
each
in
feed_order
:
writer
.
append_tensor
(
res
[
each
])
writer
.
complete_append_tensor
()
counter
+=
1
lines
=
[]
f_idx
+=
1
print
(
"written file: "
,
filename
)
return
counter
def
prepare_imagenet
(
inpath
,
outpath
,
batch_size
):
r
=
paddle
.
batch
(
imagenet_train
(
inpath
),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
fluid
.
layers
.
data
(
name
=
"image"
,
shape
=
[
3
,
224
,
224
]),
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
'int64'
)
],
place
=
fluid
.
CPUPlace
())
outpath
=
os
.
path
.
join
(
outpath
,
"imagenet.recordio"
)
convert_reader_to_recordio_files
(
outpath
,
10000
,
r
,
feeder
)
python/paddle/fluid/layers/io.py
浏览文件 @
47630a4a
...
...
@@ -434,7 +434,7 @@ def open_files(filenames,
shapes
,
lod_levels
,
dtypes
,
thread_num
,
thread_num
=
1
,
buffer_size
=
None
,
pass_num
=
1
,
for_parallel
=
True
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录