keypoint_utils.py 18.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Z
zhiboniu 已提交
14 15 16
"""
this code is based on https://github.com/open-mmlab/mmpose
"""
17 18 19

import cv2
import numpy as np
L
LokeZhou 已提交
20
import paddle.nn.functional as F
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


def get_affine_mat_kernel(h, w, s, inv=False):
    if w < h:
        w_ = s
        h_ = int(np.ceil((s / w * h) / 64.) * 64)
        scale_w = w
        scale_h = h_ / w_ * w

    else:
        h_ = s
        w_ = int(np.ceil((s / h * w) / 64.) * 64)
        scale_h = h
        scale_w = w_ / h_ * h

    center = np.array([np.round(w / 2.), np.round(h / 2.)])

    size_resized = (w_, h_)
    trans = get_affine_transform(
        center, np.array([scale_w, scale_h]), 0, size_resized, inv=inv)

    return trans, size_resized


def get_affine_transform(center,
                         input_size,
                         rot,
                         output_size,
                         shift=(0., 0.),
                         inv=False):
    """Get the affine transform matrix, given the center/scale/rot/output_size.

    Args:
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
W
wangguanzhong 已提交
55
        input_size (np.ndarray[2, ]): Size of input feature (width, height).
56 57 58 59 60 61 62 63 64 65 66 67 68 69
        rot (float): Rotation angle (degree).
        output_size (np.ndarray[2, ]): Size of the destination heatmaps.
        shift (0-100%): Shift translation ratio wrt the width/height.
            Default (0., 0.).
        inv (bool): Option to inverse the affine transform direction.
            (inv=False: src->dst or inv=True: dst->src)

    Returns:
        np.ndarray: The transform matrix.
    """
    assert len(center) == 2
    assert len(output_size) == 2
    assert len(shift) == 2

W
wangguanzhong 已提交
70 71
    if not isinstance(input_size, (np.ndarray, list)):
        input_size = np.array([input_size, input_size], dtype=np.float32)
72 73 74 75 76 77 78 79 80 81 82 83
    scale_tmp = input_size

    shift = np.array(shift)
    src_w = scale_tmp[0]
    dst_w = output_size[0]
    dst_h = output_size[1]

    rot_rad = np.pi * rot / 180
    src_dir = rotate_point([0., src_w * -0.5], rot_rad)
    dst_dir = np.array([0., dst_w * -0.5])

    src = np.zeros((3, 2), dtype=np.float32)
W
wangguanzhong 已提交
84

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    src[2, :] = _get_3rd_point(src[0, :], src[1, :])

    dst = np.zeros((3, 2), dtype=np.float32)
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
    dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


J
JYChen 已提交
102
def get_warp_matrix(theta, size_input, size_dst, size_target):
103 104 105 106
    """This code is based on
        https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py

        Calculate the transformation matrix under the constraint of unbiased.
J
JYChen 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
    Data Processing for Human Pose Estimation (CVPR 2020).

    Args:
        theta (float): Rotation angle in degrees.
        size_input (np.ndarray): Size of input image [w, h].
        size_dst (np.ndarray): Size of output image [w, h].
        size_target (np.ndarray): Size of ROI in input plane [w, h].

    Returns:
        matrix (np.ndarray): A matrix for transformation.
    """
    theta = np.deg2rad(theta)
    matrix = np.zeros((2, 3), dtype=np.float32)
    scale_x = size_dst[0] / size_target[0]
    scale_y = size_dst[1] / size_target[1]
    matrix[0, 0] = np.cos(theta) * scale_x
    matrix[0, 1] = -np.sin(theta) * scale_x
    matrix[0, 2] = scale_x * (
        -0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] *
        np.sin(theta) + 0.5 * size_target[0])
    matrix[1, 0] = np.sin(theta) * scale_y
    matrix[1, 1] = np.cos(theta) * scale_y
    matrix[1, 2] = scale_y * (
        -0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] *
        np.cos(theta) + 0.5 * size_target[1])
    return matrix


136 137 138 139 140 141 142 143 144 145 146 147 148 149
def _get_3rd_point(a, b):
    """To calculate the affine matrix, three pairs of points are required. This
    function is used to get the 3rd point, given 2D points a & b.

    The 3rd point is defined by rotating vector `a - b` by 90 degrees
    anticlockwise, using b as the rotation center.

    Args:
        a (np.ndarray): point(x,y)
        b (np.ndarray): point(x,y)

    Returns:
        np.ndarray: The 3rd point.
    """
W
wangguanzhong 已提交
150 151 152 153
    assert len(
        a) == 2, 'input of _get_3rd_point should be point with length of 2'
    assert len(
        b) == 2, 'input of _get_3rd_point should be point with length of 2'
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    direction = a - b
    third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)

    return third_pt


def rotate_point(pt, angle_rad):
    """Rotate a point by an angle.

    Args:
        pt (list[float]): 2 dimensional point to be rotated
        angle_rad (float): rotation angle by radian

    Returns:
        list[float]: Rotated point.
    """
    assert len(pt) == 2
    sn, cs = np.sin(angle_rad), np.cos(angle_rad)
    new_x = pt[0] * cs - pt[1] * sn
    new_y = pt[0] * sn + pt[1] * cs
    rotated_pt = [new_x, new_y]

    return rotated_pt


def transpred(kpts, h, w, s):
    trans, _ = get_affine_mat_kernel(h, w, s, inv=True)

    return warp_affine_joints(kpts[..., :2].copy(), trans)


def warp_affine_joints(joints, mat):
    """Apply affine transformation defined by the transform matrix on the
    joints.

    Args:
        joints (np.ndarray[..., 2]): Origin coordinate of joints.
        mat (np.ndarray[3, 2]): The affine matrix.

    Returns:
        matrix (np.ndarray[..., 2]): Result coordinate of joints.
    """
    joints = np.array(joints)
    shape = joints.shape
    joints = joints.reshape(-1, 2)
    return np.dot(np.concatenate(
        (joints, joints[:, 0:1] * 0 + 1), axis=1),
                  mat.T).reshape(shape)
Z
zhiboniu 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343


def affine_transform(pt, t):
    new_pt = np.array([pt[0], pt[1], 1.]).T
    new_pt = np.dot(t, new_pt)
    return new_pt[:2]


def transform_preds(coords, center, scale, output_size):
    target_coords = np.zeros(coords.shape)
    trans = get_affine_transform(center, scale * 200, 0, output_size, inv=1)
    for p in range(coords.shape[0]):
        target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
    return target_coords


def oks_iou(g, d, a_g, a_d, sigmas=None, in_vis_thre=None):
    if not isinstance(sigmas, np.ndarray):
        sigmas = np.array([
            .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07,
            .87, .87, .89, .89
        ]) / 10.0
    vars = (sigmas * 2)**2
    xg = g[0::3]
    yg = g[1::3]
    vg = g[2::3]
    ious = np.zeros((d.shape[0]))
    for n_d in range(0, d.shape[0]):
        xd = d[n_d, 0::3]
        yd = d[n_d, 1::3]
        vd = d[n_d, 2::3]
        dx = xd - xg
        dy = yd - yg
        e = (dx**2 + dy**2) / vars / ((a_g + a_d[n_d]) / 2 + np.spacing(1)) / 2
        if in_vis_thre is not None:
            ind = list(vg > in_vis_thre) and list(vd > in_vis_thre)
            e = e[ind]
        ious[n_d] = np.sum(np.exp(-e)) / e.shape[0] if e.shape[0] != 0 else 0.0
    return ious


def oks_nms(kpts_db, thresh, sigmas=None, in_vis_thre=None):
    """greedily select boxes with high confidence and overlap with current maximum <= thresh
    rule out overlap >= thresh

    Args:
        kpts_db (list): The predicted keypoints within the image
        thresh (float): The threshold to select the boxes
        sigmas (np.array): The variance to calculate the oks iou
            Default: None
        in_vis_thre (float): The threshold to select the high confidence boxes
            Default: None

    Return:
        keep (list): indexes to keep
    """

    if len(kpts_db) == 0:
        return []

    scores = np.array([kpts_db[i]['score'] for i in range(len(kpts_db))])
    kpts = np.array(
        [kpts_db[i]['keypoints'].flatten() for i in range(len(kpts_db))])
    areas = np.array([kpts_db[i]['area'] for i in range(len(kpts_db))])

    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)

        oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]],
                          sigmas, in_vis_thre)

        inds = np.where(oks_ovr <= thresh)[0]
        order = order[inds + 1]

    return keep


def rescore(overlap, scores, thresh, type='gaussian'):
    assert overlap.shape[0] == scores.shape[0]
    if type == 'linear':
        inds = np.where(overlap >= thresh)[0]
        scores[inds] = scores[inds] * (1 - overlap[inds])
    else:
        scores = scores * np.exp(-overlap**2 / thresh)

    return scores


def soft_oks_nms(kpts_db, thresh, sigmas=None, in_vis_thre=None):
    """greedily select boxes with high confidence and overlap with current maximum <= thresh
    rule out overlap >= thresh

    Args:
        kpts_db (list): The predicted keypoints within the image
        thresh (float): The threshold to select the boxes
        sigmas (np.array): The variance to calculate the oks iou
            Default: None
        in_vis_thre (float): The threshold to select the high confidence boxes
            Default: None

    Return:
        keep (list): indexes to keep
    """

    if len(kpts_db) == 0:
        return []

    scores = np.array([kpts_db[i]['score'] for i in range(len(kpts_db))])
    kpts = np.array(
        [kpts_db[i]['keypoints'].flatten() for i in range(len(kpts_db))])
    areas = np.array([kpts_db[i]['area'] for i in range(len(kpts_db))])

    order = scores.argsort()[::-1]
    scores = scores[order]

    # max_dets = order.size
    max_dets = 20
    keep = np.zeros(max_dets, dtype=np.intp)
    keep_cnt = 0
    while order.size > 0 and keep_cnt < max_dets:
        i = order[0]

        oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]],
                          sigmas, in_vis_thre)

        order = order[1:]
        scores = rescore(oks_ovr, scores[1:], thresh)

        tmp = scores.argsort()[::-1]
        order = order[tmp]
        scores = scores[tmp]

        keep[keep_cnt] = i
        keep_cnt += 1

    keep = keep[:keep_cnt]

    return keep
L
LokeZhou 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403


def resize(input,
           size=None,
           scale_factor=None,
           mode='nearest',
           align_corners=None,
           warning=True):
    if warning:
        if size is not None and align_corners:
            input_h, input_w = tuple(int(x) for x in input.shape[2:])
            output_h, output_w = tuple(int(x) for x in size)
            if output_h > input_h or output_w > output_h:
                if ((output_h > 1 and output_w > 1 and input_h > 1 and
                     input_w > 1) and (output_h - 1) % (input_h - 1) and
                    (output_w - 1) % (input_w - 1)):
                    warnings.warn(
                        f'When align_corners={align_corners}, '
                        'the output would more aligned if '
                        f'input size {(input_h, input_w)} is `x+1` and '
                        f'out size {(output_h, output_w)} is `nx+1`')

    return F.interpolate(input, size, scale_factor, mode, align_corners)


def flip_back(output_flipped, flip_pairs, target_type='GaussianHeatmap'):
    """Flip the flipped heatmaps back to the original form.
    Note:
        - batch_size: N
        - num_keypoints: K
        - heatmap height: H
        - heatmap width: W
    Args:
        output_flipped (np.ndarray[N, K, H, W]): The output heatmaps obtained
            from the flipped images.
        flip_pairs (list[tuple()): Pairs of keypoints which are mirrored
            (for example, left ear -- right ear).
        target_type (str): GaussianHeatmap or CombinedTarget
    Returns:
        np.ndarray: heatmaps that flipped back to the original image
    """
    assert len(output_flipped.shape) == 4, \
        'output_flipped should be [batch_size, num_keypoints, height, width]'
    shape_ori = output_flipped.shape
    channels = 1
    if target_type.lower() == 'CombinedTarget'.lower():
        channels = 3
        output_flipped[:, 1::3, ...] = -output_flipped[:, 1::3, ...]
    output_flipped = output_flipped.reshape((shape_ori[0], -1, channels,
                                             shape_ori[2], shape_ori[3]))
    output_flipped_back = output_flipped.clone()

    # Swap left-right parts
    for left, right in flip_pairs:
        output_flipped_back[:, left, ...] = output_flipped[:, right, ...]
        output_flipped_back[:, right, ...] = output_flipped[:, left, ...]
    output_flipped_back = output_flipped_back.reshape(shape_ori)
    # Flip horizontally
    output_flipped_back = output_flipped_back[..., ::-1]
    return output_flipped_back
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551


def _calc_distances(preds, targets, mask, normalize):
    """Calculate the normalized distances between preds and target.

    Note:
        batch_size: N
        num_keypoints: K
        dimension of keypoints: D (normally, D=2 or D=3)

    Args:
        preds (np.ndarray[N, K, D]): Predicted keypoint location.
        targets (np.ndarray[N, K, D]): Groundtruth keypoint location.
        mask (np.ndarray[N, K]): Visibility of the target. False for invisible
            joints, and True for visible. Invisible joints will be ignored for
            accuracy calculation.
        normalize (np.ndarray[N, D]): Typical value is heatmap_size

    Returns:
        np.ndarray[K, N]: The normalized distances. \
            If target keypoints are missing, the distance is -1.
    """
    N, K, _ = preds.shape
    # set mask=0 when normalize==0
    _mask = mask.copy()
    _mask[np.where((normalize == 0).sum(1))[0], :] = False
    distances = np.full((N, K), -1, dtype=np.float32)
    # handle invalid values
    normalize[np.where(normalize <= 0)] = 1e6
    distances[_mask] = np.linalg.norm(
        ((preds - targets) / normalize[:, None, :])[_mask], axis=-1)
    return distances.T


def _distance_acc(distances, thr=0.5):
    """Return the percentage below the distance threshold, while ignoring
    distances values with -1.

    Note:
        batch_size: N
    Args:
        distances (np.ndarray[N, ]): The normalized distances.
        thr (float): Threshold of the distances.

    Returns:
        float: Percentage of distances below the threshold. \
            If all target keypoints are missing, return -1.
    """
    distance_valid = distances != -1
    num_distance_valid = distance_valid.sum()
    if num_distance_valid > 0:
        return (distances[distance_valid] < thr).sum() / num_distance_valid
    return -1


def keypoint_pck_accuracy(pred, gt, mask, thr, normalize):
    """Calculate the pose accuracy of PCK for each individual keypoint and the
    averaged accuracy across all keypoints for coordinates.

    Note:
        PCK metric measures accuracy of the localization of the body joints.
        The distances between predicted positions and the ground-truth ones
        are typically normalized by the bounding box size.
        The threshold (thr) of the normalized distance is commonly set
        as 0.05, 0.1 or 0.2 etc.

        - batch_size: N
        - num_keypoints: K

    Args:
        pred (np.ndarray[N, K, 2]): Predicted keypoint location.
        gt (np.ndarray[N, K, 2]): Groundtruth keypoint location.
        mask (np.ndarray[N, K]): Visibility of the target. False for invisible
            joints, and True for visible. Invisible joints will be ignored for
            accuracy calculation.
        thr (float): Threshold of PCK calculation.
        normalize (np.ndarray[N, 2]): Normalization factor for H&W.

    Returns:
        tuple: A tuple containing keypoint accuracy.

        - acc (np.ndarray[K]): Accuracy of each keypoint.
        - avg_acc (float): Averaged accuracy across all keypoints.
        - cnt (int): Number of valid keypoints.
    """
    distances = _calc_distances(pred, gt, mask, normalize)

    acc = np.array([_distance_acc(d, thr) for d in distances])
    valid_acc = acc[acc >= 0]
    cnt = len(valid_acc)
    avg_acc = valid_acc.mean() if cnt > 0 else 0
    return acc, avg_acc, cnt


def keypoint_auc(pred, gt, mask, normalize, num_step=20):
    """Calculate the pose accuracy of PCK for each individual keypoint and the
    averaged accuracy across all keypoints for coordinates.

    Note:
        - batch_size: N
        - num_keypoints: K

    Args:
        pred (np.ndarray[N, K, 2]): Predicted keypoint location.
        gt (np.ndarray[N, K, 2]): Groundtruth keypoint location.
        mask (np.ndarray[N, K]): Visibility of the target. False for invisible
            joints, and True for visible. Invisible joints will be ignored for
            accuracy calculation.
        normalize (float): Normalization factor.

    Returns:
        float: Area under curve.
    """
    nor = np.tile(np.array([[normalize, normalize]]), (pred.shape[0], 1))
    x = [1.0 * i / num_step for i in range(num_step)]
    y = []
    for thr in x:
        _, avg_acc, _ = keypoint_pck_accuracy(pred, gt, mask, thr, nor)
        y.append(avg_acc)

    auc = 0
    for i in range(num_step):
        auc += 1.0 / num_step * y[i]
    return auc


def keypoint_epe(pred, gt, mask):
    """Calculate the end-point error.

    Note:
        - batch_size: N
        - num_keypoints: K

    Args:
        pred (np.ndarray[N, K, 2]): Predicted keypoint location.
        gt (np.ndarray[N, K, 2]): Groundtruth keypoint location.
        mask (np.ndarray[N, K]): Visibility of the target. False for invisible
            joints, and True for visible. Invisible joints will be ignored for
            accuracy calculation.

    Returns:
        float: Average end-point error.
    """

    normalize = np.ones((pred.shape[0], pred.shape[2]), dtype=np.float32)
    distances = _calc_distances(pred, gt, mask, normalize)
    distance_valid = distances[distances != -1]
    return distance_valid.sum() / max(1, len(distance_valid))