adadelta_op.cc 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/adadelta_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20
using Tensor = framework::Tensor;
C
chengduo 已提交
21

22 23 24 25
class AdadeltaOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext *ctx) const override {
27 28 29 30 31 32 33 34
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(Param) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(Grad) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("AvgSquaredGrad"),
                   "Input(AvgSquaredGrad) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("AvgSquaredUpdate"),
                   "Input(AvgSquaredUpdate) of AdadeltaOp should not be null.");
C
chengduo 已提交
35 36 37 38 39 40 41 42 43 44
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Param").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Param").front(), ctx->GetInputsVarType("Param").front());
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Grad").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Grad").front(), ctx->GetInputsVarType("Grad").front());
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("AvgSquaredGradOut"),
        "Output(AvgSquaredGradOut) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("AvgSquaredUpdateOut"),
        "Output(AvgSquaredUpdateOut) of AdadeltaOp should not be null.");

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(
        param_dim, ctx->GetInputDim("Grad"),
        "param and grad input of AdadeltaOp should have same dimension");
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredGrad"),
                      "Param and AvgSquaredGrad input of AdadeltaOp "
                      "should have same dimension");
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredUpdate"),
                      "Param and AvgSquaredUpdate input of AdadeltaOp "
                      "should have same dimension");

    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("AvgSquaredGradOut", param_dim);
    ctx->SetOutputDim("AvgSquaredUpdateOut", param_dim);
  }
C
chengduo 已提交
70

D
dzhwinter 已提交
71 72
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
M
minqiyang 已提交
73 74
    return framework::OpKernelType(ctx.Input<Tensor>("Param")->type(),
                                   ctx.GetPlace());
D
dzhwinter 已提交
75
  }
76 77 78 79
};

class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
80
  void Make() override {
81 82
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
83
    AddInput("AvgSquaredGrad", "(Tensor) Input average of squared gradient");
84
    AddInput("AvgSquaredUpdate",
85
             "(Tensor) Input average of squared parameter updates");
86 87 88

    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("AvgSquaredGradOut",
89
              "(Tensor) Output average of squared gradient");
90
    AddOutput("AvgSquaredUpdateOut",
91
              "(Tensor) Output average of squared parameter updates");
92 93 94 95 96 97 98 99 100 101

    AddAttr<float>("rho",
                   "(float, default 0.95) Exponential decay rate "
                   "for squared gradients.")
        .SetDefault(0.95f);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-6) Constant for "
                   "numerical stability")
        .SetDefault(1.0e-6f);
    AddComment(R"DOC(
102
Adadelta Optimizer.
103

104 105 106 107
Adadelta optimizer is implemented as explained in:
https://arxiv.org/abs/1212.5701
Adadelta is a per-dimension adaptive learning rate method used
for gradient descent.
108

109
Adadelta updates are as follows:
110

111 112 113 114 115 116
$$
avg\_squared\_grad\_out = \rho * avg\_squared\_grad + (1 - \rho) * grad * grad \\
param\_update =  - \sqrt{\frac{avg\_squared\_update + \epsilon}{avg\_squared\_grad\_out + \epsilon}} * grad \\
avg\_squared\_update\_out = \rho * avg\_squared\_update + (1 - \rho) * {param\_update}^2 \\
param\_out = param + param\_update
$$
117 118 119 120 121 122 123 124 125 126 127

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adadelta, ops::AdadeltaOp, ops::AdadeltaOpMaker);
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
128 129
    adadelta, ops::AdadeltaOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdadeltaOpKernel<paddle::platform::CPUDeviceContext, double>);