提交 828c5b3e 编写于 作者: A Abhinav Arora 提交者: GitHub

Adding Adadelta optimization operator (#4576)

* Adding Adadelta optimization operator
* Making inputs and outputs conform to naming convention
* Removing type alias from header files
* Fixing Adadelta documentation in comments
* Addressing code review feedback
上级 1172f249
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/adadelta_op.h"
namespace paddle {
namespace operators {
class AdadeltaOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContextBase *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Param"),
"Input(Param) of AdadeltaOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Grad"),
"Input(Grad) of AdadeltaOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("AvgSquaredGrad"),
"Input(AvgSquaredGrad) of AdadeltaOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("AvgSquaredUpdate"),
"Input(AvgSquaredUpdate) of AdadeltaOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
"Output(ParamOut) of AdadeltaOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("AvgSquaredGradOut"),
"Output(AvgSquaredGradOut) of AdadeltaOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("AvgSquaredUpdateOut"),
"Output(AvgSquaredUpdateOut) of AdadeltaOp should not be null.");
auto param_dim = ctx->GetInputDim("Param");
PADDLE_ENFORCE_EQ(
param_dim, ctx->GetInputDim("Grad"),
"param and grad input of AdadeltaOp should have same dimension");
PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredGrad"),
"Param and AvgSquaredGrad input of AdadeltaOp "
"should have same dimension");
PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredUpdate"),
"Param and AvgSquaredUpdate input of AdadeltaOp "
"should have same dimension");
ctx->SetOutputDim("ParamOut", param_dim);
ctx->SetOutputDim("AvgSquaredGradOut", param_dim);
ctx->SetOutputDim("AvgSquaredUpdateOut", param_dim);
}
};
class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AdadeltaOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
AddInput("AvgSquaredGrad",
"(Tensor) Input expectation of squared gradient");
AddInput("AvgSquaredUpdate",
"(Tensor) Input expectation of squared parameter updates");
AddOutput("ParamOut", "(Tensor) Output parameter");
AddOutput("AvgSquaredGradOut",
"(Tensor) Output expectation of squared gradient");
AddOutput("AvgSquaredUpdateOut",
"(Tensor) Output expectation of squared parameter updates");
AddAttr<float>("rho",
"(float, default 0.95) Exponential decay rate "
"for squared gradients.")
.SetDefault(0.95f);
AddAttr<float>("epsilon",
"(float, default 1.0e-6) Constant for "
"numerical stability")
.SetDefault(1.0e-6f);
AddComment(R"DOC(
Adadelta Updates Operator.
This implements the Adadelta optimizer[1]. Adadelta is a per-dimension
adaptive learning rate method for gradient descent.
Adadelta updates:
avg_squared_grad_out = rho * avg_squared_grad + (1 - rho) * grad * grad
param_update = - sqrt((avg_squared_update + epsilon) /
(avg_squared_grad_out + epsilon)) * grad
avg_squared_update_out = rho * avg_squared_update + (1 - rho) * param_update**2
param_out = param + param_update
References:
[1] ADADELTA: An Adaptive Learning Rate Method
https://arxiv.org/abs/1212.5701
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adadelta, ops::AdadeltaOp, ops::AdadeltaOpMaker);
REGISTER_OP_CPU_KERNEL(
adadelta, ops::AdadeltaOpKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/adadelta_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
adadelta, ops::AdadeltaOpKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class AdadeltaOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
auto avg_squared_grad_out_tensor =
ctx.Output<framework::Tensor>("AvgSquaredGradOut");
auto avg_squared_update_out_tensor =
ctx.Output<framework::Tensor>("AvgSquaredUpdateOut");
param_out_tensor->mutable_data<T>(ctx.GetPlace());
avg_squared_grad_out_tensor->mutable_data<T>(ctx.GetPlace());
avg_squared_update_out_tensor->mutable_data<T>(ctx.GetPlace());
float rho = ctx.Attr<float>("rho");
float epsilon = ctx.Attr<float>("epsilon");
auto param = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Param"));
auto grad = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Grad"));
// Squared gradient accumulator
auto avg_squared_grad = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("AvgSquaredGrad"));
// Squared updates accumulator
auto avg_squared_update = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("AvgSquaredUpdate"));
auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
auto avg_squared_grad_out =
framework::EigenVector<T>::Flatten(*avg_squared_grad_out_tensor);
auto avg_squared_update_out =
framework::EigenVector<T>::Flatten(*avg_squared_update_out_tensor);
auto place = ctx.GetEigenDevice<Place>();
avg_squared_grad_out.device(place) =
rho * avg_squared_grad + (1 - rho) * grad.square();
auto update =
-((avg_squared_update + epsilon) / (avg_squared_grad_out + epsilon))
.sqrt() *
grad;
avg_squared_update_out.device(place) =
rho * avg_squared_update + (1 - rho) * update.square();
param_out.device(place) = param + update;
}
};
} // namespace operators
} // namespace paddle
import unittest
import numpy as np
from op_test import OpTest
class TestAdadeltaOp1(OpTest):
def setUp(self):
self.op_type = "adadelta"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The squared gradient is positive
avg_squared_grad = np.random.random((102, 105)).astype("float32")
# The squared update is positive
avg_squared_update = np.random.random((102, 105)).astype("float32")
rho = 0.95
epsilon = 1e-6
self.inputs = {
'Param': param,
'Grad': grad,
'AvgSquaredGrad': avg_squared_grad,
'AvgSquaredUpdate': avg_squared_update
}
self.attrs = {'rho': rho, 'epsilon': epsilon}
avg_squared_grad_out = rho * avg_squared_grad + \
(1 - rho) * np.square(grad)
update = -np.multiply(
np.sqrt(
np.divide(avg_squared_update + epsilon, avg_squared_grad_out +
epsilon)), grad)
avg_squared_update_out = rho * avg_squared_update + \
(1 - rho) * np.square(update)
param_out = param + update
self.outputs = {
'ParamOut': param_out,
'AvgSquaredGradOut': avg_squared_grad_out,
'AvgSquaredUpdateOut': avg_squared_update_out
}
def test_check_output(self):
self.check_output()
class TestAdadeltaOp2(OpTest):
'''Test Adadelta op with default attribute values
'''
def setUp(self):
self.op_type = "adadelta"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The squared gradient is positive
avg_squared_grad = np.random.random((102, 105)).astype("float32")
# The squared update is positive
avg_squared_update = np.random.random((102, 105)).astype("float32")
rho = 0.95
epsilon = 1e-6
self.inputs = {
'Param': param,
'Grad': grad,
'AvgSquaredGrad': avg_squared_grad,
'AvgSquaredUpdate': avg_squared_update
}
avg_squared_grad_out = rho * avg_squared_grad + \
(1 - rho) * np.square(grad)
update = -np.multiply(
np.sqrt(
np.divide(avg_squared_update + epsilon, avg_squared_grad_out +
epsilon)), grad)
avg_squared_update_out = rho * avg_squared_update + \
(1 - rho) * np.square(update)
param_out = param + update
self.outputs = {
'ParamOut': param_out,
'AvgSquaredGradOut': avg_squared_grad_out,
'AvgSquaredUpdateOut': avg_squared_update_out
}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册