fusion_gru_op.cc 16.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/fused/fusion_gru_op.h"
T
tensor-tang 已提交
16
#include <cstring>  // for memcpy
T
tensor-tang 已提交
17
#include <string>
T
tensor-tang 已提交
18 19
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
21 22 23 24 25 26
#include "paddle/fluid/operators/math/sequence2batch.h"

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
27 28
  PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of GRU.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
T
tensor-tang 已提交
29
                 "Assert only one Input(WeightX) of GRU.");
30
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
T
tensor-tang 已提交
31
                 "Assert only one Input(WeightH) of GRU.");
32 33
  PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of GRU.");
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
34
                 "Assert only one Output(Hidden) of GRU.");
T
tensor-tang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
                    "should be %d.",
                    frame_size);
  PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
                    "The second dimension of Input(WeightH) "
                    "should be 3 * %d.",
                    frame_size);

60
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
61 62 63 64
    auto h0_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                      "The width of H0 must be equal to frame_size.");
  }
65
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
66 67 68 69 70
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
    PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
T
tensor-tang 已提交
71 72
                      "The shape of Bias must be [1, frame_size * 3].");
  }
T
tensor-tang 已提交
73 74 75
  framework::DDim out_dims({x_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
76
  int xx_width;
T
tensor-tang 已提交
77
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
78 79 80
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
81
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
T
tensor-tang 已提交
82
                   "Assert only one Output(ReorderedH0) of GRU.");
83
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
T
tensor-tang 已提交
84
                   "Assert only one Output(BatchedInput) of GRU.");
85
    PADDLE_ENFORCE(ctx->HasOutput("BatchedOut"),
T
tensor-tang 已提交
86
                   "Assert only one Output(BatchedOut) of GRU.");
T
tensor-tang 已提交
87 88
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
89
  }
T
tensor-tang 已提交
90 91
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
92 93 94 95
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
M
minqiyang 已提交
96 97
  return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                 ctx.device_context());
T
tensor-tang 已提交
98 99 100
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
101 102
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
103
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
104 105
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
106 107 108 109 110
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
111 112 113 114
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
115 116 117 118 119
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
120
  AddInput("Bias",
T
tensor-tang 已提交
121 122 123
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
124
      .AsDispensable();
T
tensor-tang 已提交
125 126
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
127
  AddOutput("XX",
T
tensor-tang 已提交
128
            "(LoDTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
129 130 131
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
132
      .AsIntermediate();
T
tensor-tang 已提交
133 134 135 136
  AddOutput("BatchedInput",
            "(LoDTensor) This is the batched result of input X"
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
T
tensor-tang 已提交
137
  AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
138
      .AsIntermediate();
T
tensor-tang 已提交
139
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
153 154 155 156
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
T
tensor-tang 已提交
157 158 159 160 161 162 163
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
164
template <typename T>
T
tensor-tang 已提交
165 166
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
167
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
168
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
169 170 171 172 173 174
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

T
tensor-tang 已提交
175 176 177 178 179 180 181 182 183 184
#define INIT_BASE_DEFINES                  \
  auto* x = ctx.Input<LoDTensor>("X");     \
  auto* wh = ctx.Input<Tensor>("WeightH"); \
  auto* xx = ctx.Output<LoDTensor>("XX");  \
  auto x_lod = x->lod();                   \
  auto x_dims = x->dims();   /* T x M*/    \
  auto wh_dims = wh->dims(); /* D x 3D*/   \
  const int total_T = x_dims[0];           \
  const int D3 = wh_dims[1]

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#define INIT_OTHER_DEFINES                                         \
  auto* h0 = ctx.Input<Tensor>("H0");                              \
  auto* wx = ctx.Input<Tensor>("WeightX");                         \
  auto* bias = ctx.Input<Tensor>("Bias");                          \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden");              \
  bool is_reverse = ctx.Attr<bool>("is_reverse");                  \
  const int M = x_dims[1];                                         \
  const int D = wh_dims[0];                                        \
  const int D2 = D * 2;                                            \
  const math::jitkernel::gru_attr_t attr(                          \
      D, ctx.Attr<std::string>("gate_activation"),                 \
      ctx.Attr<std::string>("activation"));                        \
  math::jitkernel::gru_t one_step;                                 \
  const auto& ker =                                                \
      math::jitkernel::KernelPool::Instance()                      \
          .template Get<math::jitkernel::GRUKernel<T>,             \
                        const math::jitkernel::gru_attr_t&>(attr); \
  const T* x_data = x->data<T>();                                  \
  const T* wx_data = wx->data<T>();                                \
  const T* wh_data = wh->data<T>();                                \
  auto place = ctx.GetPlace();                                     \
T
tensor-tang 已提交
206
  T* xx_data = xx->mutable_data<T>(place)
T
tensor-tang 已提交
207

T
tensor-tang 已提交
208 209
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
210 211
    INIT_BASE_DEFINES;
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
212
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
213
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
214
    const T* wh_state_data = wh_data + D * D2;
T
tensor-tang 已提交
215
    T* hidden_out_data = hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
216 217
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
T
tensor-tang 已提交
218 219
                                      xx_data,
                                      bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
237
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
238 239 240 241
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
242 243 244
        one_step.gates = xx_data;
        one_step.ht = hidden_out_data;
        ker->ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
245 246 247 248 249 250 251 252 253
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D2, D, static_cast<T>(1),
                  prev_hidden_data, D, wh_data, D2, static_cast<T>(1), xx_data,
                  D3);
254 255 256 257
        one_step.gates = xx_data;
        one_step.ht_1 = prev_hidden_data;
        one_step.ht = hidden_out_data;
        ker->ComputeHtPart1(&one_step, &attr);
T
tensor-tang 已提交
258 259 260 261
        // gemm rt * Ws
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D, D, static_cast<T>(1),
                  hidden_out_data, D, wh_state_data, D, static_cast<T>(1),
                  xx_data + D2, D3);
262
        ker->ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
263 264 265 266 267 268 269 270
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
271
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
272 273
    INIT_BASE_DEFINES;
    if (x_lod[0].size() == 2) {
274
      xx->Resize({total_T, D3});
T
tensor-tang 已提交
275 276 277
      SeqCompute(ctx);
      return;
    }
T
tensor-tang 已提交
278
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
279 280 281
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
T
tensor-tang 已提交
282 283 284
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_out_data = batched_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
285 286 287
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
288 289 290 291
    if (M > D3) {
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
                                        xx_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
292
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
293 294
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
295
      batched_input->set_lod(xx->lod());
T
tensor-tang 已提交
296 297 298
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, xx_data, wx_data,
                                        batched_input_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
299 300
    }

T
tensor-tang 已提交
301 302 303 304
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
305

T
tensor-tang 已提交
306
    int tstart = 0;
T
tensor-tang 已提交
307
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
308
    if (h0) {
T
tensor-tang 已提交
309
      // reorder h0
T
tensor-tang 已提交
310
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
T
tensor-tang 已提交
311 312 313 314 315 316 317
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
318
    } else {
T
tensor-tang 已提交
319 320 321 322 323
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
324 325 326
        one_step.gates = cur_in_data;
        one_step.ht = cur_out_data;
        ker->ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
327 328 329 330 331 332
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
333
    }
T
tensor-tang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D2, D, static_cast<T>(1),
                prev_hidden_data, D, wh_data, D2, static_cast<T>(1),
                batched_input_data, D3);

      T* cur_batched_data = batched_input_data;
348
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
349 350
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
351 352 353 354 355
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
        ker->ComputeHtPart1(&one_step, &attr);

T
tensor-tang 已提交
356 357
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
358
        cur_out_data += D;
T
tensor-tang 已提交
359 360
      }

T
tensor-tang 已提交
361
      cur_batched_data = batched_input_data;
362
      cur_out_data = batched_out_data;
T
tensor-tang 已提交
363
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D, D, static_cast<T>(1),
364
                cur_out_data, D, wh_state_data, D, static_cast<T>(1),
T
tensor-tang 已提交
365 366 367 368
                cur_batched_data + D2, D3);

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
369 370 371 372
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
        ker->ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
373 374 375
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
376
      }
T
tensor-tang 已提交
377 378 379
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
380
    }
T
tensor-tang 已提交
381

T
tensor-tang 已提交
382
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
383 384
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
385
  }
T
tensor-tang 已提交
386 387
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
T
tensor-tang 已提交
388 389 390 391 392 393 394 395
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
T
tensor-tang 已提交
396 397
REGISTER_OP_CPU_KERNEL(fusion_gru, ops::FusionGRUKernel<float>,
                       ops::FusionGRUKernel<double>);