Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c7adb99a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c7adb99a
编写于
9月 03, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comment and refine code
上级
f38905a6
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
51 addition
and
46 deletion
+51
-46
paddle/fluid/operators/fusion_gru_op.cc
paddle/fluid/operators/fusion_gru_op.cc
+51
-46
未找到文件。
paddle/fluid/operators/fusion_gru_op.cc
浏览文件 @
c7adb99a
...
...
@@ -21,8 +21,6 @@ limitations under the License. */
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/platform/cpu_info.h"
DEFINE_bool
(
gru_use_seq
,
true
,
"Use sequence mode"
);
namespace
paddle
{
namespace
operators
{
...
...
@@ -87,7 +85,7 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
int
xx_width
;
if
(
FLAGS_gru_use_seq
)
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"use_seq"
)
)
{
xx_width
=
wx_dims
[
1
];
}
else
{
xx_width
=
x_dims
[
1
]
>
wx_dims
[
1
]
?
wx_dims
[
1
]
:
x_dims
[
1
];
...
...
@@ -136,7 +134,10 @@ void FusionGRUOpMaker::Make() {
" where T is the total time steps in this mini-batch,"
" D is the hidden size, M is the dim size of x input."
)
.
AsIntermediate
();
AddOutput
(
"BatchedInput"
,
"(LoDTensor) (T x 3D)"
).
AsIntermediate
();
AddOutput
(
"BatchedInput"
,
"(LoDTensor) This is the batched result of input X"
"or the batched result after fc, shape (T x 3D)"
)
.
AsIntermediate
();
AddOutput
(
"BatchedOut"
,
"(LoDTensor) (T X D) save batched hidden."
)
.
AsIntermediate
();
AddOutput
(
"Hidden"
,
"(LoDTensor) (T x D) Same as GRUOp"
);
...
...
@@ -153,6 +154,10 @@ void FusionGRUOpMaker::Make() {
"(bool, defalut: False) "
"whether to compute reversed GRU."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_seq"
,
"(bool, defalut: True) "
"whether to use seq mode to compute GRU."
)
.
SetDefault
(
true
);
AddComment
(
R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU,
...
...
@@ -164,7 +169,7 @@ template <typename T>
class
FusionGRUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
if
(
FLAGS_gru_use_seq
)
{
if
(
ctx
.
Attr
<
bool
>
(
"use_seq"
)
)
{
SeqCompute
(
ctx
);
}
else
{
BatchCompute
(
ctx
);
...
...
@@ -188,31 +193,35 @@ class FusionGRUKernel : public framework::OpKernel<T> {
cross = math::vec_cross<T, platform::jit::isa_any>; \
}
#define INIT_BASE_INPUT_OUTPUT \
auto* h0 = ctx.Input<Tensor>("H0"); \
auto* wx = ctx.Input<Tensor>("WeightX"); \
auto* wh = ctx.Input<Tensor>("WeightH"); \
auto* bias = ctx.Input<Tensor>("Bias"); \
auto* xx = ctx.Output<LoDTensor>("XX"); \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
bool is_reverse = ctx.Attr<bool>("is_reverse");
#define INIT_BASE_SIZES \
auto x_dims = x->dims();
/* T x M*/
\
auto wh_dims = wh->dims();
/* D x 3D*/
\
const int total_T = x_dims[0]; \
const int M = x_dims[1]; \
const int D = wh_dims[0]; \
const int D3 = wh_dims[1]; \
const int D2 = D * 2;
void
SeqCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
wx
=
ctx
.
Input
<
Tensor
>
(
"WeightX"
);
auto
*
wh
=
ctx
.
Input
<
Tensor
>
(
"WeightH"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
xx
=
ctx
.
Output
<
LoDTensor
>
(
"XX"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
bool
is_reverse
=
ctx
.
Attr
<
bool
>
(
"is_reverse"
);
INIT_BASE_INPUT_OUTPUT
INIT_BASE_SIZES
INIT_VEC_FUNC
auto
x_lod
=
x
->
lod
();
auto
x_dims
=
x
->
dims
();
// T x M
auto
wh_dims
=
wh
->
dims
();
// D x 3D
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
const
int
total_T
=
x_dims
[
0
];
const
int
M
=
x_dims
[
1
];
const
int
D3
=
wh_dims
[
1
];
const
int
D
=
wh_dims
[
0
];
const
int
D2
=
D
*
2
;
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
NULL
;
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
nullptr
;
const
T
*
wx_data
=
wx
->
data
<
T
>
();
const
T
*
wh_data
=
wh
->
data
<
T
>
();
const
T
*
wh_state_data
=
wh_data
+
D
*
D2
;
...
...
@@ -221,7 +230,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
D3
,
M
,
x_data
,
wx_data
,
xx_data
,
bias
?
bias
->
data
<
T
>
()
:
NULL
);
xx_data
,
bias
?
bias
->
data
<
T
>
()
:
nullptr
);
int
xx_offset
=
D3
;
int
gate_offset
=
D
;
...
...
@@ -239,7 +249,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
int
bid
=
is_reverse
?
N
-
1
-
i
:
i
;
int
seq_len
=
x_lod
[
0
][
bid
+
1
]
-
x_lod
[
0
][
bid
];
const
T
*
prev_hidden_data
=
NULL
;
const
T
*
prev_hidden_data
=
nullptr
;
int
tstart
=
0
;
if
(
h0_data
)
{
prev_hidden_data
=
h0_data
+
bid
*
D
;
...
...
@@ -282,19 +292,17 @@ class FusionGRUKernel : public framework::OpKernel<T> {
void
BatchCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
wx
=
ctx
.
Input
<
Tensor
>
(
"WeightX"
);
auto
*
wh
=
ctx
.
Input
<
Tensor
>
(
"WeightH"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
if
(
x
->
lod
()[
0
].
size
()
==
2
)
{
SeqCompute
(
ctx
);
return
;
}
INIT_BASE_INPUT_OUTPUT
INIT_BASE_SIZES
INIT_VEC_FUNC
auto
*
reordered_h0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedH0"
);
auto
*
xx
=
ctx
.
Output
<
LoDTensor
>
(
"XX"
);
auto
*
batched_input
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedInput"
);
auto
*
batched_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedOut"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
bool
is_reverse
=
ctx
.
Attr
<
bool
>
(
"is_reverse"
);
INIT_VEC_FUNC
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
wx_data
=
wx
->
data
<
T
>
();
...
...
@@ -304,25 +312,20 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T
*
batched_out_data
=
batched_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
x_dims
=
x
->
dims
();
auto
wx_dims
=
wx
->
dims
();
const
int
D3
=
wx_dims
[
1
];
const
int
D
=
D3
/
3
;
const
int
D2
=
D
*
2
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
if
(
x_dims
[
1
]
>
wx_dims
[
1
]
)
{
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
x_dims
[
0
],
wx_dims
[
1
],
x_dims
[
1
]
,
x
_data
,
wx_data
,
x
x_data
,
bias
?
bias
->
data
<
T
>
()
:
NULL
);
if
(
M
>
D3
)
{
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
D3
,
M
,
x_data
,
wx_data
,
xx_data
,
bias
?
bias
->
data
<
T
>
()
:
nullptr
);
to_batch
(
dev_ctx
,
*
xx
,
batched_input
,
true
,
is_reverse
);
}
else
{
to_batch
(
dev_ctx
,
*
x
,
xx
,
true
,
is_reverse
);
batched_input
->
set_lod
(
xx
->
lod
());
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
x_dims
[
0
],
wx_dims
[
1
],
x_dims
[
1
]
,
xx_data
,
wx_data
,
batched_input_data
,
bias
?
bias
->
data
<
T
>
()
:
NULL
);
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
D3
,
M
,
xx_data
,
wx_data
,
batched_input_data
,
bias
?
bias
->
data
<
T
>
()
:
nullptr
);
}
auto
batched_lod
=
batched_input
->
lod
();
...
...
@@ -331,7 +334,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
reordered_h0
->
Resize
({
max_bs
,
D
});
int
tstart
=
0
;
T
*
prev_hidden_data
=
NULL
;
T
*
prev_hidden_data
=
nullptr
;
if
(
h0
)
{
// reorder h0
T
*
reordered_h0_data
=
reordered_h0
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
@@ -415,6 +418,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
to_seq
(
dev_ctx
,
*
batched_out
,
hidden_out
);
}
#undef INIT_VEC_FUNC
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
};
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录