conv_transpose_op.cc 16.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
S
Siddharth Goyal 已提交
16 17
#include <string>
#include <vector>
C
chengduoZH 已提交
18 19 20 21

namespace paddle {
namespace operators {

C
chengduoZH 已提交
22
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
24
                 "Input(Input) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
26
                 "Input(Filter) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
27
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
28
                 "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
29 30 31

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
32 33
  std::vector<int> output_size =
      ctx->Attrs().Get<std::vector<int>>("output_size");
C
chengduoZH 已提交
34 35
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
36
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
37
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
38

C
chengduoZH 已提交
39 40 41 42 43 44 45 46
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "ConvTransposeOp intput should be 4-D or 5-D tensor.");
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
  PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
                 "ConvTransposeOp input dimension and strides dimension should "
                 "be consistent.");
47 48 49 50
  if (output_size.size())
    PADDLE_ENFORCE_EQ(output_size.size(), strides.size(),
                      "ConvTransposeOp output_size dimension and strides "
                      "dimension should be the same.");
C
chengduoZH 已提交
51
  PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
C
chengduoZH 已提交
52
                    "ConvTransposeOp paddings dimension and strides "
C
chengduoZH 已提交
53
                    "dimension should be the same.");
C
chengduoZH 已提交
54 55 56
  PADDLE_ENFORCE_EQ(paddings.size(), dilations.size(),
                    "ConvTransposeOp paddings dimension and dilations "
                    "dimension should be the same.");
C
chengduoZH 已提交
57
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
Y
Yibing Liu 已提交
58
                    "In ConvTransposeOp, The number of input channels should "
59
                    "be equal to the number of filter's channels.");
C
chengduoZH 已提交
60

Y
Yibing Liu 已提交
61
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[1] * groups});
C
chengduoZH 已提交
62
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
63
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
64 65 66 67 68 69 70 71 72 73 74
    auto infer_shape =
        (in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] + filter_extent;
    if (output_size.size()) {
      PADDLE_ENFORCE((output_size[i] >= infer_shape &&
                      output_size[i] < infer_shape + strides[i]),
                     "ConvTransposeOp output_size should be "
                     "in appropriate range.");
      output_shape.push_back(output_size[i]);
    } else {
      output_shape.push_back(infer_shape);
    }
C
chengduoZH 已提交
75
  }
C
chengduoZH 已提交
76
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
77 78
}

79 80 81
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
82
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
83 84 85 86 87 88
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
89 90 91 92 93 94 95 96 97
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
M
minqiyang 已提交
98 99
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout_, library_);
100 101
}

Y
Yu Yang 已提交
102
void Conv2DTransposeOpMaker::Make() {
C
chengduoZH 已提交
103 104 105 106
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
107 108
      "number of input channels, H is the height of the feature, and "
      "W is the width of the feature.");
C
chengduoZH 已提交
109 110 111 112 113 114 115 116
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
C
chengduoZH 已提交
117
  AddOutput("Output",
C
chengduoZH 已提交
118
            "(Tensor) The output tensor of convolution transpose operator. "
C
chengduoZH 已提交
119
            "The format of output tensor is also NCHW.");
120 121 122 123
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
Y
Yibing Liu 已提交
124 125 126 127
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
128 129 130 131 132
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
133 134
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
135
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
136
      "convolution transpose operator.")
C
chengduoZH 已提交
137
      .SetDefault({1, 1});
C
chengduoZH 已提交
138 139
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
140
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
141
      "transpose operator.")
C
chengduoZH 已提交
142
      .SetDefault({0, 0});
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
162
  AddComment(R"DOC(
C
chengduoZH 已提交
163 164
Convolution2D Transpose Operator.

C
chengduoZH 已提交
165
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
166
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
167
parameters is checked in the infer-shape.
C
chengduoZH 已提交
168 169 170 171 172 173 174
Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
175
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
176

Y
update  
yi.wu 已提交
177
For an example:
C
chengduoZH 已提交
178
  Input:
C
chengduoZH 已提交
179 180
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
181
  Output:
C
chengduoZH 已提交
182 183 184
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
185 186
       H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
187
  $$
C
chengduoZH 已提交
188 189 190
)DOC");
}

Y
Yu Yang 已提交
191
void Conv3DTransposeOpMaker::Make() {
C
chengduoZH 已提交
192 193 194 195 196 197
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator."
           "The format of input tensor is NCDHW. Where N is batch size, C is "
           "the number of channels, D is the depth of the feature, H is the "
           "height of the feature, and "
           "W is the width of the feature.");
C
chengduoZH 已提交
198 199
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
200 201 202
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
203 204
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
205
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
206
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
207 208 209 210
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
C
chengduoZH 已提交
211 212
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
213 214 215 216
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
217 218 219 220 221 222
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
223
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
224
                            "(vector<int> default:{1, 1, 1}), the "
225
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
226
                            "convolution transpose operator.")
C
chengduoZH 已提交
227
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
228
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
229
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
230
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
231
      .SetDefault({0, 0, 0});
232 233 234 235
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
255
  AddComment(R"DOC(
C
chengduoZH 已提交
256 257
Convolution3D Transpose Operator.

C
chengduoZH 已提交
258
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
259
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
260
parameters is checked in the infer-shape.
C
chengduoZH 已提交
261 262 263 264 265 266 267 268
Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
269
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
270

271
Example:
C
chengduoZH 已提交
272
  Input:
C
chengduoZH 已提交
273 274
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
275
  Output:
C
chengduoZH 已提交
276 277 278
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
279 280 281
       D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
282
  $$
C
chengduoZH 已提交
283 284 285
)DOC");
}

C
chengduoZH 已提交
286
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
287 288 289 290 291 292 293 294 295 296
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

297 298 299
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
300
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
301 302 303 304 305 306
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
307 308 309 310 311 312 313 314 315
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
M
minqiyang 已提交
316 317
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout_, library_);
318 319
}

C
chengduoZH 已提交
320 321 322 323
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
324

325
// conv2d_transpose
Y
Yang Yang 已提交
326 327
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
328 329
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
330 331

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
332
    conv2d_transpose,
Q
QI JUN 已提交
333 334
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
335
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
336
    conv2d_transpose_grad,
Q
QI JUN 已提交
337 338 339
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
340

341
// conv3d_transpose
Y
Yang Yang 已提交
342 343
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
                  ops::Conv3DTransposeOpMaker,
344 345
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
346 347

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
348
    conv3d_transpose,
Q
QI JUN 已提交
349 350
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
351
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
352
    conv3d_transpose_grad,
Q
QI JUN 已提交
353 354 355
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

// depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose_grad,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);