Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
669c0df6
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
669c0df6
编写于
5月 22, 2018
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add groups for conv transpose
上级
8b1b7564
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
103 addition
and
42 deletion
+103
-42
paddle/fluid/operators/conv_transpose_op.cc
paddle/fluid/operators/conv_transpose_op.cc
+8
-4
paddle/fluid/operators/conv_transpose_op.h
paddle/fluid/operators/conv_transpose_op.h
+58
-28
python/paddle/fluid/tests/unittests/test_conv2d_transpose_op.py
.../paddle/fluid/tests/unittests/test_conv2d_transpose_op.py
+37
-10
未找到文件。
paddle/fluid/operators/conv_transpose_op.cc
浏览文件 @
669c0df6
...
...
@@ -32,6 +32,7 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"dilations"
);
int
groups
=
ctx
->
Attrs
().
Get
<
int
>
(
"groups"
);
PADDLE_ENFORCE
(
in_dims
.
size
()
==
4
||
in_dims
.
size
()
==
5
,
"ConvTransposeOp intput should be 4-D or 5-D tensor."
);
...
...
@@ -48,10 +49,10 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
"ConvTransposeOp paddings dimension and dilations "
"dimension should be the same."
);
PADDLE_ENFORCE_EQ
(
in_dims
[
1
],
filter_dims
[
0
],
"In ConvTransposeOp, The
input channel should be the same
"
"
as the number of filter
s."
);
"In ConvTransposeOp, The
number of input channels should
"
"
be equal to the number of filter' channel
s."
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
1
]});
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
1
]
*
groups
});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
auto
filter_extent
=
dilations
[
i
]
*
(
filter_dims
[
i
+
2
]
-
1
)
+
1
;
output_shape
.
push_back
((
in_dims
[
i
+
2
]
-
1
)
*
strides
[
i
]
-
2
*
paddings
[
i
]
+
...
...
@@ -102,7 +103,10 @@ void Conv2DTransposeOpMaker::Make() {
AddOutput
(
"Output"
,
"(Tensor) The output tensor of convolution transpose operator. "
"The format of output tensor is also NCHW."
);
AddAttr
<
int
>
(
"groups"
,
"(int default:1), the groups number of the convolution "
"transpose operator. "
)
.
SetDefault
(
1
);
AddAttr
<
std
::
vector
<
int
>>
(
"dilations"
,
"(vector<int> default:{1, 1}), the "
"dilations(h_dilation, w_dilation) of convolution "
...
...
paddle/fluid/operators/conv_transpose_op.h
浏览文件 @
669c0df6
...
...
@@ -70,7 +70,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
// groups will alway be disabled in conv2dtranspose.
int
groups
=
context
.
Attr
<
int
>
(
"groups"
);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
...
...
@@ -81,10 +81,10 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
// use col_shape in the im2col and col2im (or vol2col and col2vol)
// calculation
// col_shape_vec: {c
, k_h, k_w, h, w} or {c
, k_d, k_h, k_w, d, h, w}
// col_shape_vec: {c
/g, k_h, k_w, h, w} or {c/g
, k_d, k_h, k_w, d, h, w}
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
output
->
dims
()[
1
];
col_shape_vec
[
0
]
=
output
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
input_shape_vec
[
j
+
2
];
...
...
@@ -92,7 +92,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
// use col_matrix_shape in the gemm calculation
// size: (c
* k_h * k_w, h * w) or (c
* k_d * k_h * k_w, d * h * w)
// size: (c
/g * k_h * k_w, h * w) or (c/g
* k_d * k_h * k_w, d * h * w)
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
Tensor
col
;
...
...
@@ -111,7 +111,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
// input matrix size: (m, h * w) or (m, d * h * w)
DDim
input_matrix_shape
=
{
input
->
dims
()[
1
],
col_matrix_shape
[
1
]};
// filter size: (m, c
* k_h * k_w) or (m, c
* k_d * k_h * k_w)
// filter size: (m, c
/g * k_h * k_w) or (m, c/g
* k_d * k_h * k_w)
DDim
filter_matrix_shape
=
{
input
->
dims
()[
1
],
col_matrix_shape
[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
...
...
@@ -121,6 +121,8 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
set_zero
(
dev_ctx
,
output
,
static_cast
<
T
>
(
0
));
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Col2ImFunctor
<
math
::
ColFormat
::
kCFO
,
DeviceContext
,
T
>
col2im
;
math
::
Col2VolFunctor
<
DeviceContext
,
T
>
col2vol
;
...
...
@@ -133,22 +135,29 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
Tensor
output_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// col_matrix = filter * input_batch
// of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
blas
.
MatMul
(
filter
,
true
,
input_batch
,
false
,
static_cast
<
T
>
(
1.0
),
&
col_matrix
,
static_cast
<
T
>
(
0.0
));
if
(
data_dim
==
2U
)
{
// col2im: col_matrix -> dy
// from (c * k_h * k_w, h * w) to (c, o_h, o_w)
col2im
(
dev_ctx
,
col
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
output_batch
);
}
else
if
(
data_dim
==
3U
)
{
// col2vol: col_matrix -> dy
// from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w)
col2vol
(
dev_ctx
,
col
,
dilations
,
strides
,
paddings
,
&
output_batch
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
input_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
Tensor
out_slice
=
output_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
// col_matrix = filter_slice * input_slice
// of shape (c/g * k_h * k_w, h * w)
// or (c/g * k_d * k_h * k_w, d * h * w)
blas
.
MatMul
(
filter_slice
,
true
,
in_slice
,
false
,
static_cast
<
T
>
(
1.0
),
&
col_matrix
,
static_cast
<
T
>
(
0.0
));
if
(
data_dim
==
2U
)
{
// col2im: col_matrix -> dy
// from (c/g * k_h * k_w, h * w) to (c/g, o_h, o_w)
col2im
(
dev_ctx
,
col
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
out_slice
);
}
else
if
(
data_dim
==
3U
)
{
// col2vol: col_matrix -> dy
// from (c/g * k_d * k_h * k_w, d * h * w) to (c/g, o_d, o_h, o_w)
col2vol
(
dev_ctx
,
col
,
dilations
,
strides
,
paddings
,
&
out_slice
);
}
}
}
}
...
...
@@ -174,6 +183,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
int
groups
=
context
.
Attr
<
int
>
(
"groups"
);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
...
...
@@ -205,9 +215,11 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// input matrix size: (m, h * w) or (m, d * h * w)
DDim
input_matrix_shape
=
{
input
->
dims
()[
1
],
col_matrix_shape
[
1
]};
// filter size: (m, c
* k_h * k_w) or (m, c
* k_d * k_h * k_w)
DDim
filter_matrix_shape
=
{
input
->
dims
()[
1
],
col_matrix_shape
[
0
]};
// filter size: (m, c
/g * k_h * k_w) or (m, c/g
* k_d * k_h * k_w)
DDim
filter_matrix_shape
=
{
input
->
dims
()[
1
],
col_matrix_shape
[
0
]
/
groups
};
filter
.
Resize
(
filter_matrix_shape
);
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
col_step
=
static_cast
<
int
>
(
col_matrix_shape
[
0
])
/
groups
;
// convolution transpose grad on input:
// im2col + gemm (similar to conv-forward)
...
...
@@ -233,7 +245,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
}
if
(
filter_grad
)
{
// filter size (m, c, k_h, k_w)
if
(
filter_grad
)
{
// filter size (m, c
/g
, k_h, k_w)
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
set_zero
(
dev_ctx
,
filter_grad
,
static_cast
<
T
>
(
0
));
filter_grad_
=
*
filter_grad
;
...
...
@@ -268,8 +280,17 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// or
// (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
// d, h, w)
blas
.
MatMul
(
filter
,
false
,
col_matrix
,
false
,
static_cast
<
T
>
(
1.0
),
&
input_grad_batch
,
static_cast
<
T
>
(
0.0
));
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
input_grad_slice
=
input_grad_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
Tensor
col_matrix_slice
=
col_matrix
.
Slice
(
g
*
col_step
,
(
g
+
1
)
*
col_step
);
blas
.
MatMul
(
filter_slice
,
false
,
col_matrix_slice
,
false
,
static_cast
<
T
>
(
1.0
),
&
input_grad_slice
,
static_cast
<
T
>
(
0.0
));
}
}
if
(
filter_grad
)
{
// input batch
...
...
@@ -279,8 +300,17 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// or
// (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
// k_h * k_w)
blas
.
MatMul
(
in_batch
,
false
,
col_matrix
,
true
,
static_cast
<
T
>
(
1.0
),
&
filter_grad_
,
static_cast
<
T
>
(
1.0
));
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_batch_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
Tensor
filter_grad_slice
=
filter_grad_
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
Tensor
col_matrix_slice
=
col_matrix
.
Slice
(
g
*
col_step
,
(
g
+
1
)
*
col_step
);
blas
.
MatMul
(
in_batch_slice
,
false
,
col_matrix_slice
,
true
,
static_cast
<
T
>
(
1.0
),
&
filter_grad_slice
,
static_cast
<
T
>
(
1.0
));
}
}
}
}
...
...
python/paddle/fluid/tests/unittests/test_conv2d_transpose_op.py
浏览文件 @
669c0df6
...
...
@@ -21,8 +21,11 @@ from op_test import OpTest
def
conv2dtranspose_forward_naive
(
input_
,
filter_
,
attrs
):
in_n
,
in_c
,
in_h
,
in_w
=
input_
.
shape
f_c
,
out_c
,
f_h
,
f_w
=
filter_
.
shape
f_c
,
f_out_c
,
f_h
,
f_w
=
filter_
.
shape
groups
=
attrs
[
'groups'
]
assert
in_c
==
f_c
out_c
=
f_out_c
*
groups
sub_in_c
=
in_c
/
groups
stride
,
pad
,
dilations
=
attrs
[
'strides'
],
attrs
[
'paddings'
],
attrs
[
'dilations'
]
...
...
@@ -36,15 +39,21 @@ def conv2dtranspose_forward_naive(input_, filter_, attrs):
for
n
in
range
(
in_n
):
for
i
in
range
(
in_h
):
for
j
in
range
(
in_w
):
input_masked
=
input_
[
n
,
:,
i
,
j
]
# (c)
input_masked
=
np
.
reshape
(
input_masked
,
(
in_c
,
1
,
1
))
input_masked
=
np
.
tile
(
input_masked
,
(
1
,
f_h
,
f_w
))
for
k
in
range
(
out_c
):
tmp_out
=
np
.
sum
(
input_masked
*
filter_
[:,
k
,
:,
:],
axis
=
0
)
i1
,
i2
=
i
*
stride
[
0
],
i
*
stride
[
0
]
+
d_bolck_h
j1
,
j2
=
j
*
stride
[
0
],
j
*
stride
[
0
]
+
d_bolck_h
out
[
n
,
k
,
i1
:
i2
:
dilations
[
0
],
j1
:
j2
:
dilations
[
1
]]
+=
tmp_out
for
g
in
range
(
groups
):
input_masked
=
input_
[
n
,
g
*
sub_in_c
:(
g
+
1
)
*
sub_in_c
,
i
,
j
]
# (c)
input_masked
=
np
.
reshape
(
input_masked
,
(
sub_in_c
,
1
,
1
))
input_masked
=
np
.
tile
(
input_masked
,
(
1
,
f_h
,
f_w
))
for
k
in
range
(
f_out_c
):
tmp_out
=
np
.
sum
(
input_masked
*
filter_
[
g
*
sub_in_c
:(
g
+
1
)
*
sub_in_c
,
k
,
:,
:],
axis
=
0
)
i1
,
i2
=
i
*
stride
[
0
],
i
*
stride
[
0
]
+
d_bolck_h
j1
,
j2
=
j
*
stride
[
0
],
j
*
stride
[
0
]
+
d_bolck_h
out
[
n
,
g
*
f_out_c
+
k
,
i1
:
i2
:
dilations
[
0
],
j1
:
j2
:
dilations
[
1
]]
+=
tmp_out
out
=
out
[:,
:,
pad
[
0
]:
out_h
-
pad
[
0
],
pad
[
1
]:
out_w
-
pad
[
1
]]
return
out
...
...
@@ -64,6 +73,7 @@ class TestConv2dTransposeOp(OpTest):
self
.
attrs
=
{
'strides'
:
self
.
stride
,
'paddings'
:
self
.
pad
,
'groups'
:
self
.
groups
,
'dilations'
:
self
.
dilations
,
'use_cudnn'
:
self
.
use_cudnn
,
'data_format'
:
'AnyLayout'
# TODO(dzhwinter) : should be fix latter
...
...
@@ -127,6 +137,7 @@ class TestConv2dTransposeOp(OpTest):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
1
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
...
...
@@ -140,16 +151,29 @@ class TestWithPad(TestConv2dTransposeOp):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
1
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
class
TestWithGroups
(
TestConv2dTransposeOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
2
self
.
input_size
=
[
2
,
4
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
3
,
3
,
3
]
class
TestWithStride
(
TestConv2dTransposeOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
1
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
...
...
@@ -159,6 +183,7 @@ class TestWithDilation(TestConv2dTransposeOp):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
groups
=
1
self
.
dilations
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
...
...
@@ -176,6 +201,7 @@ class TestCUDNNWithPad(TestWithPad):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
groups
=
1
self
.
dilations
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
...
...
@@ -190,6 +216,7 @@ class TestCUDNNWithStride(TestWithStride):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
groups
=
1
self
.
dilations
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录