sequence_expand_op.h 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
Y
yangyaming 已提交
19
#include "paddle/fluid/operators/math/math_function.h"
W
wanghaoshuang 已提交
20 21 22 23 24

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
Y
yangyaming 已提交
25 26 27
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
W
wanghaoshuang 已提交
28

Q
QI JUN 已提交
29
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
30
class SequenceExpandKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
31 32 33
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<LoDTensor>("X");
W
wanghaoshuang 已提交
34
    auto* y = context.Input<LoDTensor>("Y");
Y
yangyaming 已提交
35 36
    auto* out = context.Output<LoDTensor>("Out");

Y
yangyaming 已提交
37
    int ref_level = context.Attr<int>("ref_level");
Y
yangyaming 已提交
38 39 40
    auto& x_lod = x->lod();
    auto& y_lod = y->lod();

Y
yangyaming 已提交
41 42
    if (ref_level == -1) ref_level = y_lod.size() - 1;

Y
yangyaming 已提交
43 44
    out->mutable_data<T>(context.GetPlace());

Y
yangyaming 已提交
45
    if (y_lod[ref_level].size() <= 1) {
Y
yangyaming 已提交
46 47 48
      framework::TensorCopy(*x, context.GetPlace(), out);
      return;
    }
W
wanghaoshuang 已提交
49

Y
yangyaming 已提交
50 51
    auto& out_lod = *out->mutable_lod();
    if (x_lod.size() == 1) {
Y
yangyaming 已提交
52
      out_lod.resize(1);
Y
yangyaming 已提交
53 54 55 56
      out_lod[0] = {0};
    }

    int out_offset = 0;
Y
yangyaming 已提交
57 58
    auto& eigen_place =
        *context.template device_context<DeviceContext>().eigen_device();
Y
yangyaming 已提交
59 60 61 62 63 64 65 66 67
    for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
      int repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1];
      int x_start = i - 1;
      int x_end = i;
      if (x_lod.size() == 1) {
        x_start = x_lod[0][i - 1];
        x_end = x_lod[0][i];
      }
      int x_seq_len = x_end - x_start;
Y
yangyaming 已提交
68 69 70
      if (repeat_num > 0) {
        auto x_sub_tensor = x->Slice(x_start, x_end);
        x_sub_tensor.Resize({1, x_sub_tensor.numel()});
Y
yangyaming 已提交
71 72 73
        int out_start = out_offset;
        if (x_lod.size() == 1) {
          out_start = out_lod[0][out_offset];
Y
yangyaming 已提交
74
        }
Y
yangyaming 已提交
75 76 77 78 79 80 81 82 83 84 85
        auto out_sub_tensor =
            out->Slice(out_start, out_start + x_seq_len * repeat_num);
        out_sub_tensor.Resize({repeat_num, x_sub_tensor.dims()[1]});
        EigenMatrix<T>::From(out_sub_tensor).device(eigen_place) =
            EigenMatrix<T>::From(x_sub_tensor)
                .broadcast(Eigen::array<int, 2>({{repeat_num, 1}}));
      }
      for (int j = 0; j < repeat_num; ++j) {
        if (x_lod.size() == 1) {
          out_lod[0].push_back(out_lod[0].back() + x_seq_len);
        }
Y
yangyaming 已提交
86
        out_offset++;
Y
yangyaming 已提交
87
      }
W
wanghaoshuang 已提交
88
    }
W
wanghaoshuang 已提交
89 90 91
  }
};

92 93 94 95 96 97 98 99 100 101 102 103
/*
 *Given Grad(Out)
 *
 *    Grad(Out).lod = [[0,                            2],
 *                     [0,              3,            6]]
 *    Grad(Out).data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
 * Then
 *    Grad(X).data = [(0.1 + 0.2 + 0.3), (0.4 + 0.5 + 0.6)]
 *                 = [0.6, 1.5]
 *    Grad(X).lod = Input(X).lod
 *
 * */
Q
QI JUN 已提交
104
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
105
class SequenceExpandGradKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
106 107
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
yangyaming 已提交
108
    auto* g_out = context.Input<LoDTensor>(framework::GradVarName("Out"));
W
wanghaoshuang 已提交
109
    auto* x = context.Input<LoDTensor>("X");
Y
yangyaming 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    auto* y = context.Input<LoDTensor>("Y");
    auto* g_x = context.Output<LoDTensor>(framework::GradVarName("X"));
    int ref_level = context.Attr<int>("ref_level");

    g_x->mutable_data<T>(context.GetPlace());
    g_x->set_lod(x->lod());

    auto& x_lod = x->lod();
    auto& y_lod = y->lod();

    if (ref_level == -1) ref_level = y_lod.size() - 1;

    // just copy the gradient
    if (y_lod[ref_level].size() <= 1) {
      framework::TensorCopy(*g_out, context.GetPlace(), g_x);
      return;
    }

    auto& dev_ctx = context.template device_context<DeviceContext>();

Y
yangyaming 已提交
130 131 132
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(dev_ctx, g_x, static_cast<T>(0));

Y
yangyaming 已提交
133 134 135 136 137 138 139 140 141 142 143 144
    int g_out_offset = 0;
    for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
      int repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1];
      if (repeat_num > 0) {
        int x_start = i - 1;
        int x_end = i;
        if (x_lod.size() == 1) {
          x_start = x_lod[0][i - 1];
          x_end = x_lod[0][i];
        }
        int x_seq_len = x_end - x_start;
        auto g_x_sub = g_x->Slice(x_start, x_end);
Y
yangyaming 已提交
145
        g_x_sub.Resize(flatten_to_1d(g_x_sub.dims()));
Y
yangyaming 已提交
146 147
        int g_out_end = g_out_offset + repeat_num * x_seq_len;
        auto g_out_sub = g_out->Slice(g_out_offset, g_out_end);
Y
yangyaming 已提交
148
        g_out_sub.Resize({repeat_num, g_x_sub.dims()[0]});
Y
yangyaming 已提交
149 150 151 152
        math::ColwiseSum<DeviceContext, T> col_sum;
        col_sum(dev_ctx, g_out_sub, &g_x_sub);
        g_out_offset += repeat_num * x_seq_len;
      }
W
wanghaoshuang 已提交
153
    }
W
wanghaoshuang 已提交
154 155 156 157 158
  }
};

}  // namespace operators
}  // namespace paddle