sequence_expand_op.h 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
Y
yangyaming 已提交
19
#include "paddle/fluid/operators/math/math_function.h"
W
wanghaoshuang 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;

Q
QI JUN 已提交
26
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
27
class SequenceExpandKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
28 29 30
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<LoDTensor>("X");
W
wanghaoshuang 已提交
31
    auto* y = context.Input<LoDTensor>("Y");
Y
yangyaming 已提交
32 33 34
    auto* out = context.Output<LoDTensor>("Out");
    int ref_level = context.Attr<int>("ref_level");

Y
yangyaming 已提交
35
    out->mutable_data<T>(context.GetPlace());
Y
yangyaming 已提交
36 37 38
    auto& x_lod = x->lod();
    auto& y_lod = y->lod();

Y
yangyaming 已提交
39 40
    PADDLE_ENFORCE_GT(y_lod.size(), 0,
                      "Level number of `Y`'s lod should be greater than 0.");
Y
yangyaming 已提交
41

Y
yangyaming 已提交
42 43 44 45 46
    PADDLE_ENFORCE(
        ref_level == -1 || (ref_level >= 0 && ref_level < y_lod.size()),
        "Invlid `ref_level`, which should be either equal to -1 "
        "or in [0, %d)",
        y_lod.size());
Y
yangyaming 已提交
47

Y
yangyaming 已提交
48 49 50
    if (ref_level == -1) ref_level = y_lod.size() - 1;

    if (y_lod[ref_level].size() <= 1) {
Y
yangyaming 已提交
51 52 53
      framework::TensorCopy(*x, context.GetPlace(), out);
      return;
    }
W
wanghaoshuang 已提交
54

Y
yangyaming 已提交
55 56
    auto& out_lod = *out->mutable_lod();
    if (x_lod.size() == 1) {
Y
yangyaming 已提交
57
      out_lod.resize(1);
Y
yangyaming 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
      out_lod[0] = {0};
    }

    int out_offset = 0;
    for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
      int repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1];
      int x_start = i - 1;
      int x_end = i;
      if (x_lod.size() == 1) {
        x_start = x_lod[0][i - 1];
        x_end = x_lod[0][i];
      }
      int x_seq_len = x_end - x_start;
      auto x_sub_tensor = x->Slice(x_start, x_end);
      for (size_t j = 0; j < repeat_num; ++j) {
        int out_start = out_offset;
        if (x_lod.size() == 1) {
          out_start = out_lod[0][out_offset];
          out_lod[0].push_back(x_seq_len);
Y
yangyaming 已提交
77
        }
Y
yangyaming 已提交
78 79 80 81
        auto out_sub_tensor = out->Slice(out_start, out_start + x_seq_len);
        framework::TensorCopy(x_sub_tensor, context.GetPlace(),
                              &out_sub_tensor);
        out_offset++;
Y
yangyaming 已提交
82
      }
W
wanghaoshuang 已提交
83
    }
W
wanghaoshuang 已提交
84 85 86
  }
};

87 88 89 90 91 92 93 94 95 96 97 98
/*
 *Given Grad(Out)
 *
 *    Grad(Out).lod = [[0,                            2],
 *                     [0,              3,            6]]
 *    Grad(Out).data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
 * Then
 *    Grad(X).data = [(0.1 + 0.2 + 0.3), (0.4 + 0.5 + 0.6)]
 *                 = [0.6, 1.5]
 *    Grad(X).lod = Input(X).lod
 *
 * */
Q
QI JUN 已提交
99
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
100
class SequenceExpandGradKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
101 102
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
yangyaming 已提交
103
    auto* g_out = context.Input<LoDTensor>(framework::GradVarName("Out"));
W
wanghaoshuang 已提交
104
    auto* x = context.Input<LoDTensor>("X");
Y
yangyaming 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    auto* y = context.Input<LoDTensor>("Y");
    auto* g_x = context.Output<LoDTensor>(framework::GradVarName("X"));
    int ref_level = context.Attr<int>("ref_level");

    g_x->mutable_data<T>(context.GetPlace());
    g_x->set_lod(x->lod());

    auto& x_lod = x->lod();
    auto& y_lod = y->lod();

    if (ref_level == -1) ref_level = y_lod.size() - 1;

    // just copy the gradient
    if (y_lod[ref_level].size() <= 1) {
      framework::TensorCopy(*g_out, context.GetPlace(), g_x);
      return;
    }

    auto& dev_ctx = context.template device_context<DeviceContext>();

    int g_out_offset = 0;
    for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
      int repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1];
      if (repeat_num > 0) {
        int x_start = i - 1;
        int x_end = i;
        if (x_lod.size() == 1) {
          x_start = x_lod[0][i - 1];
          x_end = x_lod[0][i];
        }
        int x_seq_len = x_end - x_start;
        auto column = x_seq_len * x->dims()[1];
        auto g_x_sub = g_x->Slice(x_start, x_end);
        g_x_sub = framework::ReshapeToMatrix(g_x_sub, column);
        int g_out_end = g_out_offset + repeat_num * x_seq_len;
        auto g_out_sub = g_out->Slice(g_out_offset, g_out_end);
        g_out_sub = framework::ReshapeToMatrix(g_out_sub, column);
        math::ColwiseSum<DeviceContext, T> col_sum;
        col_sum(dev_ctx, g_out_sub, &g_x_sub);
        g_out_offset += repeat_num * x_seq_len;
      }
W
wanghaoshuang 已提交
146
    }
W
wanghaoshuang 已提交
147 148 149 150 151
  }
};

}  // namespace operators
}  // namespace paddle