yolov3_loss_op.cc 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/yolov3_loss_op.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("GTBox"),
                   "Input(GTBox) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
28 29
    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of Yolov3LossOp should not be null.");
30 31 32 33 34

    auto dim_x = ctx->GetInputDim("X");
    auto dim_gt = ctx->GetInputDim("GTBox");
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
    auto class_num = ctx->Attrs().Get<int>("class_num");
D
dengkaipeng 已提交
35 36 37 38 39 40 41 42
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
    PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
                      "Input(X) dim[3] and dim[4] should be euqal.");
    PADDLE_ENFORCE_EQ(dim_x[1], anchors.size() / 2 * (5 + class_num),
                      "Input(X) dim[1] should be equal to (anchor_number * (5 "
                      "+ class_num)).");
    PADDLE_ENFORCE_EQ(dim_gt.size(), 3, "Input(GTBox) should be a 3-D tensor");
    PADDLE_ENFORCE_EQ(dim_gt[2], 5, "Input(GTBox) dim[2] should be 5");
43 44 45 46 47 48 49
    PADDLE_ENFORCE_GT(anchors.size(), 0,
                      "Attr(anchors) length should be greater then 0.");
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
                      "Attr(anchors) length should be even integer.");
    PADDLE_ENFORCE_GT(class_num, 0,
                      "Attr(class_num) should be an integer greater then 0.");

D
dengkaipeng 已提交
50 51
    std::vector<int64_t> dim_out({1});
    ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace());
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input tensor of bilinear interpolation, "
             "This is a 4-D tensor with shape of [N, C, H, W]");
68 69 70 71 72 73 74 75 76
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
             "In the third dimention, stores label, x, y, w, h, "
             "label is an integer to specify box class, x, y is the "
             "center cordinate of boxes and w, h is the width and height"
             "and x, y, w, h should be divided by input image height to "
             "scale to [0, 1].");
D
dengkaipeng 已提交
77 78 79
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
              "This is a 1-D tensor with shape of [1]");
80 81

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
82 83 84 85 86
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
                              "it will be parsed pair by pair.");
    AddAttr<float>("ignore_thresh",
                   "The ignore threshold to ignore confidence loss.");
87 88 89
    AddComment(R"DOC(
         This operator generate yolov3 loss by given predict result and ground
         truth boxes.
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
         
         The output of previous network is in shape [N, C, H, W], while H and W
         should be the same, specify the grid size, each grid point predict given
         number boxes, this given number is specified by anchors, it should be 
         half anchors length, which following will be represented as S. In the 
         second dimention(the channel dimention), C should be S * (class_num + 5),
         class_num is the box categoriy number of source dataset(such as coco), 
         so in the second dimention, stores 4 box location coordinates x, y, w, h 
         and confidence score of the box and class one-hot key of each anchor box.

         While the 4 location coordinates if $$tx, ty, tw, th$$, the box predictions
         correspnd to:

         $$
         b_x = \sigma(t_x) + c_x
         b_y = \sigma(t_y) + c_y
         b_w = p_w e^{t_w}
         b_h = p_h e^{t_h}
         $$

         While $$c_x, c_y$$ is the left top corner of current grid and $$p_w, p_h$$
         is specified by anchors.

         As for confidence score, it is the logistic regression value of IoU between
         anchor boxes and ground truth boxes, the score of the anchor box which has 
         the max IoU should be 1, and if the anchor box has IoU bigger then ignore 
         thresh, the confidence score loss of this anchor box will be ignored.

         Therefore, the yolov3 loss consist of three major parts, box location loss,
         confidence score loss, and classification loss. The MSE loss is used for 
         box location, and binary cross entropy loss is used for confidence score 
         loss and classification loss.
122 123 124 125 126 127 128 129 130
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
D
dengkaipeng 已提交
131 132
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@GRAD) should not be null");
133 134 135 136 137 138
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

139
 protected:
140 141 142 143 144 145 146
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace());
  }
};

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("yolov3_loss_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("GTBox", Input("GTBox"));
    op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("GTBox"), {});
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

167 168 169 170 171
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
172
                  ops::Yolov3LossGradMaker);
173 174 175 176 177 178 179
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
REGISTER_OP_CPU_KERNEL(
    yolov3_loss,
    ops::Yolov3LossKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    yolov3_loss_grad,
    ops::Yolov3LossGradKernel<paddle::platform::CPUDeviceContext, float>);