yolov3_loss_op.cc 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/yolov3_loss_op.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("GTBox"),
                   "Input(GTBox) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
30 31
    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of Yolov3LossOp should not be null.");
32 33 34 35 36 37 38

    auto dim_x = ctx->GetInputDim("X");
    auto dim_gt = ctx->GetInputDim("GTBox");
    auto img_height = ctx->Attrs().Get<int>("img_height");
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
    auto box_num = ctx->Attrs().Get<int>("box_num");
    auto class_num = ctx->Attrs().Get<int>("class_num");
D
dengkaipeng 已提交
39 40 41 42 43 44 45 46
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
    PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
                      "Input(X) dim[3] and dim[4] should be euqal.");
    PADDLE_ENFORCE_EQ(dim_x[1], anchors.size() / 2 * (5 + class_num),
                      "Input(X) dim[1] should be equal to (anchor_number * (5 "
                      "+ class_num)).");
    PADDLE_ENFORCE_EQ(dim_gt.size(), 3, "Input(GTBox) should be a 3-D tensor");
    PADDLE_ENFORCE_EQ(dim_gt[2], 5, "Input(GTBox) dim[2] should be 5");
47 48 49 50 51 52 53 54 55 56 57
    PADDLE_ENFORCE_GT(img_height, 0,
                      "Attr(img_height) value should be greater then 0");
    PADDLE_ENFORCE_GT(anchors.size(), 0,
                      "Attr(anchors) length should be greater then 0.");
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
                      "Attr(anchors) length should be even integer.");
    PADDLE_ENFORCE_GT(box_num, 0,
                      "Attr(box_num) should be an integer greater then 0.");
    PADDLE_ENFORCE_GT(class_num, 0,
                      "Attr(class_num) should be an integer greater then 0.");

D
dengkaipeng 已提交
58 59
    std::vector<int64_t> dim_out({1});
    ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace());
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input tensor of bilinear interpolation, "
             "This is a 4-D tensor with shape of [N, C, H, W]");
D
dengkaipeng 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    AddInput(
        "GTBox",
        "The input tensor of ground truth boxes, "
        "This is a 3-D tensor with shape of [N, max_box_num, 5 + class_num], "
        "max_box_num is the max number of boxes in each image, "
        "class_num is the number of classes in data set. "
        "In the third dimention, stores x, y, w, h, confidence, classes "
        "one-hot key. "
        "x, y is the center cordinate of boxes and w, h is the width and "
        "height, "
        "and all of them should be divided by input image height to scale to "
        "[0, 1].");
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
              "This is a 1-D tensor with shape of [1]");
91 92 93

    AddAttr<int>("box_num", "The number of boxes generated in each grid.");
    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
94 95 96 97 98 99 100
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
                              "it will be parsed pair by pair.");
    AddAttr<int>("img_height",
                 "The input image height after crop of yolov3 network.");
    AddAttr<float>("ignore_thresh",
                   "The ignore threshold to ignore confidence loss.");
101 102 103 104 105 106 107 108 109 110 111 112 113 114
    AddComment(R"DOC(
         This operator generate yolov3 loss by given predict result and ground
         truth boxes.
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
D
dengkaipeng 已提交
115 116
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@GRAD) should not be null");
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
REGISTER_OP_CPU_KERNEL(
    yolov3_loss,
    ops::Yolov3LossKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    yolov3_loss_grad,
    ops::Yolov3LossGradKernel<paddle::platform::CPUDeviceContext, float>);