cascade_rcnn.py 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19 20
from collections import OrderedDict

21 22
import paddle.fluid as fluid

23
from ppdet.experimental import mixed_precision_global_state
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
from ppdet.core.workspace import register

__all__ = ['CascadeRCNN']


@register
class CascadeRCNN(object):
    """
    Cascade R-CNN architecture, see https://arxiv.org/abs/1712.00726

    Args:
        backbone (object): backbone instance
        rpn_head (object): `RPNhead` instance
        bbox_assigner (object): `BBoxAssigner` instance
        roi_extractor (object): ROI extractor instance
        bbox_head (object): `BBoxHead` instance
        fpn (object): feature pyramid network instance
    """

    __category__ = 'architecture'
    __inject__ = [
        'backbone', 'fpn', 'rpn_head', 'bbox_assigner', 'roi_extractor',
        'bbox_head'
    ]

    def __init__(self,
                 backbone,
                 rpn_head,
                 roi_extractor='FPNRoIAlign',
                 bbox_head='CascadeBBoxHead',
                 bbox_assigner='CascadeBBoxAssigner',
55
                 rpn_only=False,
56 57 58 59 60 61 62 63 64
                 fpn='FPN'):
        super(CascadeRCNN, self).__init__()
        assert fpn is not None, "cascade RCNN requires FPN"
        self.backbone = backbone
        self.fpn = fpn
        self.rpn_head = rpn_head
        self.bbox_assigner = bbox_assigner
        self.roi_extractor = roi_extractor
        self.bbox_head = bbox_head
65
        self.rpn_only = rpn_only
66 67 68 69 70 71 72 73 74 75 76
        # Cascade local cfg
        self.cls_agnostic_bbox_reg = 2
        (brw0, brw1, brw2) = self.bbox_assigner.bbox_reg_weights
        self.cascade_bbox_reg_weights = [
            [1. / brw0, 1. / brw0, 2. / brw0, 2. / brw0],
            [1. / brw1, 1. / brw1, 2. / brw1, 2. / brw1],
            [1. / brw2, 1. / brw2, 2. / brw2, 2. / brw2]
        ]
        self.cascade_rcnn_loss_weight = [1.0, 0.5, 0.25]

    def build(self, feed_vars, mode='train'):
W
wangguanzhong 已提交
77
        if mode == 'train':
78
            required_fields = ['gt_label', 'gt_box', 'is_crowd', 'im_info']
W
wangguanzhong 已提交
79 80
        else:
            required_fields = ['im_shape', 'im_info']
W
wangguanzhong 已提交
81 82 83
        self._input_check(required_fields, feed_vars)

        im = feed_vars['image']
84
        im_info = feed_vars['im_info']
W
wangguanzhong 已提交
85

86 87 88 89
        if mode == 'train':
            gt_box = feed_vars['gt_box']
            is_crowd = feed_vars['is_crowd']

90 91 92 93 94
        mixed_precision_enabled = mixed_precision_global_state() is not None
        # cast inputs to FP16
        if mixed_precision_enabled:
            im = fluid.layers.cast(im, 'float16')

95 96 97
        # backbone
        body_feats = self.backbone(im)

98 99 100 101 102
        # cast features back to FP32
        if mixed_precision_enabled:
            body_feats = OrderedDict((k, fluid.layers.cast(v, 'float32'))
                                     for k, v in body_feats.items())

103 104 105 106 107 108 109 110 111
        # FPN
        if self.fpn is not None:
            body_feats, spatial_scale = self.fpn.get_output(body_feats)

        # rpn proposals
        rpn_rois = self.rpn_head.get_proposals(body_feats, im_info, mode=mode)

        if mode == 'train':
            rpn_loss = self.rpn_head.get_loss(im_info, gt_box, is_crowd)
112 113
        else:
            if self.rpn_only:
W
wangguanzhong 已提交
114 115
                im_scale = fluid.layers.slice(
                    im_info, [1], starts=[2], ends=[3])
116 117
                im_scale = fluid.layers.sequence_expand(im_scale, rpn_rois)
                rois = rpn_rois / im_scale
118
                return {'proposal': rois}
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

        proposal_list = []
        roi_feat_list = []
        rcnn_pred_list = []
        rcnn_target_list = []

        proposals = None
        bbox_pred = None
        for i in range(3):
            if i > 0:
                refined_bbox = self._decode_box(
                    proposals,
                    bbox_pred,
                    curr_stage=i - 1, )
            else:
                refined_bbox = rpn_rois

            if mode == 'train':
                outs = self.bbox_assigner(
                    input_rois=refined_bbox, feed_vars=feed_vars, curr_stage=i)

                proposals = outs[0]
                rcnn_target_list.append(outs)
            else:
                proposals = refined_bbox
            proposal_list.append(proposals)

            # extract roi features
            roi_feat = self.roi_extractor(body_feats, proposals, spatial_scale)
            roi_feat_list.append(roi_feat)

            # bbox head
            cls_score, bbox_pred = self.bbox_head.get_output(
                roi_feat,
                wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i],
                name='_' + str(i + 1) if i > 0 else '')
            rcnn_pred_list.append((cls_score, bbox_pred))

        if mode == 'train':
            loss = self.bbox_head.get_loss(rcnn_pred_list, rcnn_target_list,
                                           self.cascade_rcnn_loss_weight)
            loss.update(rpn_loss)
            total_loss = fluid.layers.sum(list(loss.values()))
            loss.update({'loss': total_loss})
            return loss
        else:
            pred = self.bbox_head.get_prediction(
W
wangguanzhong 已提交
166 167 168
                im_info, feed_vars['im_shape'], roi_feat_list, rcnn_pred_list,
                proposal_list, self.cascade_bbox_reg_weights,
                self.cls_agnostic_bbox_reg)
169 170
            return pred

W
wangguanzhong 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    def build_multi_scale(self, feed_vars):
        required_fields = ['image', 'im_shape', 'im_info']
        self._input_check(required_fields, feed_vars)
        ims = []
        for k in feed_vars.keys():
            if 'image' in k:
                ims.append(feed_vars[k])
        result = {}
        result.update(feed_vars)
        for i, im in enumerate(ims):
            im_info = fluid.layers.slice(
                input=feed_vars['im_info'],
                axes=[1],
                starts=[3 * i],
                ends=[3 * i + 3])
            im_shape = feed_vars['im_shape']

            # backbone
            body_feats = self.backbone(im)
            result.update(body_feats)
            body_feat_names = list(body_feats.keys())

            # FPN
            if self.fpn is not None:
                body_feats, spatial_scale = self.fpn.get_output(body_feats)

            # rpn proposals
            rpn_rois = self.rpn_head.get_proposals(
                body_feats, im_info, mode='test')

            proposal_list = []
            roi_feat_list = []
            rcnn_pred_list = []

            proposals = None
            bbox_pred = None
            for i in range(3):
                if i > 0:
                    refined_bbox = self._decode_box(
                        proposals,
                        bbox_pred,
                        curr_stage=i - 1, )
                else:
                    refined_bbox = rpn_rois

                proposals = refined_bbox
                proposal_list.append(proposals)

                # extract roi features
                roi_feat = self.roi_extractor(body_feats, proposals,
                                              spatial_scale)
                roi_feat_list.append(roi_feat)

                # bbox head
                cls_score, bbox_pred = self.bbox_head.get_output(
                    roi_feat,
                    wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i],
                    name='_' + str(i + 1) if i > 0 else '')
                rcnn_pred_list.append((cls_score, bbox_pred))

            # get mask rois
            rois = proposal_list[2]

            if self.fpn is None:
                last_feat = body_feats[list(body_feats.keys())[-1]]
                roi_feat = self.roi_extractor(last_feat, rois)
            else:
                roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)

            pred = self.bbox_head.get_prediction(
                im_info,
                im_shape,
                roi_feat_list,
                rcnn_pred_list,
                proposal_list,
                self.cascade_bbox_reg_weights,
                self.cls_agnostic_bbox_reg,
                return_box_score=True)
            bbox_name = 'bbox_' + str(i)
            score_name = 'score_' + str(i)
            if 'flip' in im.name:
                bbox_name += '_flip'
                score_name += '_flip'
            result[bbox_name] = pred['bbox']
            result[score_name] = pred['score']
        return result

    def _input_check(self, require_fields, feed_vars):
        for var in require_fields:
            assert var in feed_vars, \
                "{} has no {} field".format(feed_vars, var)

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    def _decode_box(self, proposals, bbox_pred, curr_stage):
        rcnn_loc_delta_r = fluid.layers.reshape(
            bbox_pred, (-1, self.cls_agnostic_bbox_reg, 4))
        # only use fg box delta to decode box
        rcnn_loc_delta_s = fluid.layers.slice(
            rcnn_loc_delta_r, axes=[1], starts=[1], ends=[2])
        refined_bbox = fluid.layers.box_coder(
            prior_box=proposals,
            prior_box_var=self.cascade_bbox_reg_weights[curr_stage],
            target_box=rcnn_loc_delta_s,
            code_type='decode_center_size',
            box_normalized=False,
            axis=1, )
        refined_bbox = fluid.layers.reshape(refined_bbox, shape=[-1, 4])

        return refined_bbox

    def train(self, feed_vars):
        return self.build(feed_vars, 'train')

W
wangguanzhong 已提交
283 284 285
    def eval(self, feed_vars, multi_scale=None):
        if multi_scale:
            return self.build_multi_scale(feed_vars)
286 287 288 289
        return self.build(feed_vars, 'test')

    def test(self, feed_vars):
        return self.build(feed_vars, 'test')