cascade_mask_rcnn.py 14.2 KB
Newer Older
L
LordAaron 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19 20
from collections import OrderedDict

L
LordAaron 已提交
21 22
import paddle.fluid as fluid

23
from ppdet.experimental import mixed_precision_global_state
L
LordAaron 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
from ppdet.core.workspace import register

__all__ = ['CascadeMaskRCNN']


@register
class CascadeMaskRCNN(object):
    """
    Cascade Mask R-CNN architecture, see https://arxiv.org/abs/1712.00726

    Args:
        backbone (object): backbone instance
        rpn_head (object): `RPNhead` instance
        bbox_assigner (object): `BBoxAssigner` instance
        roi_extractor (object): ROI extractor instance
        bbox_head (object): `BBoxHead` instance
        mask_assigner (object): `MaskAssigner` instance
        mask_head (object): `MaskHead` instance
        fpn (object): feature pyramid network instance
    """

    __category__ = 'architecture'
    __inject__ = [
        'backbone', 'rpn_head', 'bbox_assigner', 'roi_extractor', 'bbox_head',
        'mask_assigner', 'mask_head', 'fpn'
    ]

    def __init__(self,
                 backbone,
                 rpn_head,
                 roi_extractor='FPNRoIAlign',
                 bbox_head='CascadeBBoxHead',
                 bbox_assigner='CascadeBBoxAssigner',
                 mask_assigner='MaskAssigner',
                 mask_head='MaskHead',
W
wangguanzhong 已提交
59
                 rpn_only=False,
L
LordAaron 已提交
60 61 62 63 64 65 66 67 68 69 70
                 fpn='FPN'):
        super(CascadeMaskRCNN, self).__init__()
        assert fpn is not None, "cascade RCNN requires FPN"
        self.backbone = backbone
        self.fpn = fpn
        self.rpn_head = rpn_head
        self.bbox_assigner = bbox_assigner
        self.roi_extractor = roi_extractor
        self.bbox_head = bbox_head
        self.mask_assigner = mask_assigner
        self.mask_head = mask_head
W
wangguanzhong 已提交
71
        self.rpn_only = rpn_only
L
LordAaron 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        # Cascade local cfg
        self.cls_agnostic_bbox_reg = 2
        (brw0, brw1, brw2) = self.bbox_assigner.bbox_reg_weights
        self.cascade_bbox_reg_weights = [
            [1. / brw0, 1. / brw0, 2. / brw0, 2. / brw0],
            [1. / brw1, 1. / brw1, 2. / brw1, 2. / brw1],
            [1. / brw2, 1. / brw2, 2. / brw2, 2. / brw2]
        ]
        self.cascade_rcnn_loss_weight = [1.0, 0.5, 0.25]

    def build(self, feed_vars, mode='train'):
        if mode == 'train':
            required_fields = [
                'gt_label', 'gt_box', 'gt_mask', 'is_crowd', 'im_info'
            ]
        else:
            required_fields = ['im_shape', 'im_info']
W
wangguanzhong 已提交
89
        self._input_check(required_fields, feed_vars)
L
LordAaron 已提交
90

W
wangguanzhong 已提交
91
        im = feed_vars['image']
L
LordAaron 已提交
92 93 94 95 96 97
        if mode == 'train':
            gt_box = feed_vars['gt_box']
            is_crowd = feed_vars['is_crowd']

        im_info = feed_vars['im_info']

98 99 100 101 102
        mixed_precision_enabled = mixed_precision_global_state() is not None
        # cast inputs to FP16
        if mixed_precision_enabled:
            im = fluid.layers.cast(im, 'float16')

L
LordAaron 已提交
103 104 105
        # backbone
        body_feats = self.backbone(im)

106 107 108 109 110
        # cast features back to FP32
        if mixed_precision_enabled:
            body_feats = OrderedDict((k, fluid.layers.cast(v, 'float32'))
                                     for k, v in body_feats.items())

L
LordAaron 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123
        # FPN
        if self.fpn is not None:
            body_feats, spatial_scale = self.fpn.get_output(body_feats)

        # rpn proposals
        rpn_rois = self.rpn_head.get_proposals(body_feats, im_info, mode=mode)

        if mode == 'train':
            rpn_loss = self.rpn_head.get_loss(im_info, gt_box, is_crowd)
        else:
            if self.rpn_only:
                im_scale = fluid.layers.slice(
                    im_info, [1], starts=[2], ends=[3])
124 125
                im_scale = fluid.layers.sequence_expand(im_scale, rpn_rois)
                rois = rpn_rois / im_scale
L
LordAaron 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
                return {'proposal': rois}

        proposal_list = []
        roi_feat_list = []
        rcnn_pred_list = []
        rcnn_target_list = []

        proposals = None
        bbox_pred = None
        for i in range(3):
            if i > 0:
                refined_bbox = self._decode_box(
                    proposals,
                    bbox_pred,
                    curr_stage=i - 1, )
            else:
                refined_bbox = rpn_rois

            if mode == 'train':
                outs = self.bbox_assigner(
                    input_rois=refined_bbox, feed_vars=feed_vars, curr_stage=i)

                proposals = outs[0]
                rcnn_target_list.append(outs)
            else:
                proposals = refined_bbox
            proposal_list.append(proposals)

            # extract roi features
            roi_feat = self.roi_extractor(body_feats, proposals, spatial_scale)
            roi_feat_list.append(roi_feat)

            # bbox head
            cls_score, bbox_pred = self.bbox_head.get_output(
                roi_feat,
                wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i],
                name='_' + str(i + 1) if i > 0 else '')
            rcnn_pred_list.append((cls_score, bbox_pred))

        # get mask rois
        rois = proposal_list[2]

        if mode == 'train':
            loss = self.bbox_head.get_loss(rcnn_pred_list, rcnn_target_list,
                                           self.cascade_rcnn_loss_weight)
            loss.update(rpn_loss)

            labels_int32 = rcnn_target_list[2][1]

            mask_rois, roi_has_mask_int32, mask_int32 = self.mask_assigner(
                rois=rois,
                gt_classes=feed_vars['gt_label'],
                is_crowd=feed_vars['is_crowd'],
                gt_segms=feed_vars['gt_mask'],
                im_info=feed_vars['im_info'],
                labels_int32=labels_int32)

            if self.fpn is None:
                bbox_head_feat = self.bbox_head.get_head_feat()
                feat = fluid.layers.gather(bbox_head_feat, roi_has_mask_int32)
            else:
                feat = self.roi_extractor(
                    body_feats, mask_rois, spatial_scale, is_mask=True)
            mask_loss = self.mask_head.get_loss(feat, mask_int32)
            loss.update(mask_loss)

            total_loss = fluid.layers.sum(list(loss.values()))
            loss.update({'loss': total_loss})
            return loss
        else:
W
wangguanzhong 已提交
196 197 198 199 200 201
            mask_name = 'mask_pred'
            mask_pred, bbox_pred = self.single_scale_eval(
                body_feats, spatial_scale, im_info, mask_name, bbox_pred,
                roi_feat_list, rcnn_pred_list, proposal_list,
                feed_vars['im_shape'])
            return {'bbox': bbox_pred, 'mask': mask_pred}
L
LordAaron 已提交
202

W
wangguanzhong 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    def build_multi_scale(self, feed_vars, mask_branch=False):
        required_fields = ['image', 'im_info']
        self._input_check(required_fields, feed_vars)

        ims = []
        for k in feed_vars.keys():
            if 'image' in k:
                ims.append(feed_vars[k])
        result = {}

        if not mask_branch:
            assert 'im_shape' in feed_vars, \
                "{} has no im_shape field".format(feed_vars)
            result.update(feed_vars)

        for i, im in enumerate(ims):
            im_info = fluid.layers.slice(
                input=feed_vars['im_info'],
                axes=[1],
                starts=[3 * i],
                ends=[3 * i + 3])
            body_feats = self.backbone(im)
            result.update(body_feats)

            # FPN
            if self.fpn is not None:
                body_feats, spatial_scale = self.fpn.get_output(body_feats)
            rois = self.rpn_head.get_proposals(body_feats, im_info, mode='test')
            if not mask_branch:
                im_shape = feed_vars['im_shape']
                body_feat_names = list(body_feats.keys())
                proposal_list = []
                roi_feat_list = []
                rcnn_pred_list = []

                proposals = None
                bbox_pred = None
                for i in range(3):
                    if i > 0:
                        refined_bbox = self._decode_box(
                            proposals,
                            bbox_pred,
                            curr_stage=i - 1, )
                    else:
                        refined_bbox = rois

                    proposals = refined_bbox
                    proposal_list.append(proposals)

                    # extract roi features
                    roi_feat = self.roi_extractor(body_feats, proposals,
                                                  spatial_scale)
                    roi_feat_list.append(roi_feat)

                    # bbox head
                    cls_score, bbox_pred = self.bbox_head.get_output(
                        roi_feat,
                        wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i],
                        name='_' + str(i + 1) if i > 0 else '')
                    rcnn_pred_list.append((cls_score, bbox_pred))

                # get mask rois
                if self.fpn is None:
                    body_feat = body_feats[body_feat_names[-1]]
                pred = self.bbox_head.get_prediction(
                    im_info,
                    im_shape,
                    roi_feat_list,
                    rcnn_pred_list,
                    proposal_list,
                    self.cascade_bbox_reg_weights,
                    return_box_score=True)
                bbox_name = 'bbox_' + str(i)
                score_name = 'score_' + str(i)
                if 'flip' in im.name:
                    bbox_name += '_flip'
                    score_name += '_flip'
                result[bbox_name] = pred['bbox']
                result[score_name] = pred['score']
            else:
                mask_name = 'mask_pred_' + str(i)
                bbox_pred = feed_vars['bbox']
                result.update({im.name: im})
                if 'flip' in im.name:
                    mask_name += '_flip'
                    bbox_pred = feed_vars['bbox_flip']
                mask_pred, bbox_pred = self.single_scale_eval(
                    body_feats,
                    spatial_scale,
                    im_info,
                    mask_name,
                    bbox_pred=bbox_pred,
                    use_multi_test=True)
                result[mask_name] = mask_pred
        return result

    def single_scale_eval(self,
                          body_feats,
                          spatial_scale,
                          im_info,
                          mask_name,
                          bbox_pred,
                          roi_feat_list=None,
                          rcnn_pred_list=None,
                          proposal_list=None,
                          im_shape=None,
                          use_multi_test=False):
        if self.fpn is None:
            last_feat = body_feats[list(body_feats.keys())[-1]]
        if not use_multi_test:
L
LordAaron 已提交
313
            bbox_pred = self.bbox_head.get_prediction(
W
wangguanzhong 已提交
314 315
                im_info, im_shape, roi_feat_list, rcnn_pred_list, proposal_list,
                self.cascade_bbox_reg_weights)
L
LordAaron 已提交
316 317
            bbox_pred = bbox_pred['bbox']

W
wangguanzhong 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
        # share weight
        bbox_shape = fluid.layers.shape(bbox_pred)
        bbox_size = fluid.layers.reduce_prod(bbox_shape)
        bbox_size = fluid.layers.reshape(bbox_size, [1, 1])
        size = fluid.layers.fill_constant([1, 1], value=6, dtype='int32')
        cond = fluid.layers.less_than(x=bbox_size, y=size)

        mask_pred = fluid.layers.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=False,
            name=mask_name)
        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(cond):
                fluid.layers.assign(input=bbox_pred, output=mask_pred)
            with switch.default():
                bbox = fluid.layers.slice(bbox_pred, [1], starts=[2], ends=[6])
L
LordAaron 已提交
336

W
wangguanzhong 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
                im_scale = fluid.layers.slice(
                    im_info, [1], starts=[2], ends=[3])
                im_scale = fluid.layers.sequence_expand(im_scale, bbox)

                mask_rois = bbox * im_scale
                if self.fpn is None:
                    mask_feat = self.roi_extractor(last_feat, mask_rois)
                    mask_feat = self.bbox_head.get_head_feat(mask_feat)
                else:
                    mask_feat = self.roi_extractor(
                        body_feats, mask_rois, spatial_scale, is_mask=True)

                mask_out = self.mask_head.get_prediction(mask_feat, bbox)
                fluid.layers.assign(input=mask_out, output=mask_pred)
        return mask_pred, bbox_pred

    def _input_check(self, require_fields, feed_vars):
        for var in require_fields:
            assert var in feed_vars, \
                "{} has no {} field".format(feed_vars, var)
L
LordAaron 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

    def _decode_box(self, proposals, bbox_pred, curr_stage):
        rcnn_loc_delta_r = fluid.layers.reshape(
            bbox_pred, (-1, self.cls_agnostic_bbox_reg, 4))
        # only use fg box delta to decode box
        rcnn_loc_delta_s = fluid.layers.slice(
            rcnn_loc_delta_r, axes=[1], starts=[1], ends=[2])
        refined_bbox = fluid.layers.box_coder(
            prior_box=proposals,
            prior_box_var=self.cascade_bbox_reg_weights[curr_stage],
            target_box=rcnn_loc_delta_s,
            code_type='decode_center_size',
            box_normalized=False,
            axis=1, )
        refined_bbox = fluid.layers.reshape(refined_bbox, shape=[-1, 4])

        return refined_bbox

    def train(self, feed_vars):
        return self.build(feed_vars, 'train')

W
wangguanzhong 已提交
378 379 380
    def eval(self, feed_vars, multi_scale=None, mask_branch=False):
        if multi_scale:
            return self.build_multi_scale(feed_vars, mask_branch)
L
LordAaron 已提交
381 382 383 384
        return self.build(feed_vars, 'test')

    def test(self, feed_vars):
        return self.build(feed_vars, 'test')