cascade_mask_rcnn.py 9.5 KB
Newer Older
L
LordAaron 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid

from ppdet.core.workspace import register

__all__ = ['CascadeMaskRCNN']


@register
class CascadeMaskRCNN(object):
    """
    Cascade Mask R-CNN architecture, see https://arxiv.org/abs/1712.00726

    Args:
        backbone (object): backbone instance
        rpn_head (object): `RPNhead` instance
        bbox_assigner (object): `BBoxAssigner` instance
        roi_extractor (object): ROI extractor instance
        bbox_head (object): `BBoxHead` instance
        mask_assigner (object): `MaskAssigner` instance
        mask_head (object): `MaskHead` instance
        fpn (object): feature pyramid network instance
    """

    __category__ = 'architecture'
    __inject__ = [
        'backbone', 'rpn_head', 'bbox_assigner', 'roi_extractor', 'bbox_head',
        'mask_assigner', 'mask_head', 'fpn'
    ]

    def __init__(self,
                 backbone,
                 rpn_head,
                 roi_extractor='FPNRoIAlign',
                 bbox_head='CascadeBBoxHead',
                 bbox_assigner='CascadeBBoxAssigner',
                 mask_assigner='MaskAssigner',
                 mask_head='MaskHead',
W
wangguanzhong 已提交
56
                 rpn_only=False,
L
LordAaron 已提交
57 58 59 60 61 62 63 64 65 66 67
                 fpn='FPN'):
        super(CascadeMaskRCNN, self).__init__()
        assert fpn is not None, "cascade RCNN requires FPN"
        self.backbone = backbone
        self.fpn = fpn
        self.rpn_head = rpn_head
        self.bbox_assigner = bbox_assigner
        self.roi_extractor = roi_extractor
        self.bbox_head = bbox_head
        self.mask_assigner = mask_assigner
        self.mask_head = mask_head
W
wangguanzhong 已提交
68
        self.rpn_only = rpn_only
L
LordAaron 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        # Cascade local cfg
        self.cls_agnostic_bbox_reg = 2
        (brw0, brw1, brw2) = self.bbox_assigner.bbox_reg_weights
        self.cascade_bbox_reg_weights = [
            [1. / brw0, 1. / brw0, 2. / brw0, 2. / brw0],
            [1. / brw1, 1. / brw1, 2. / brw1, 2. / brw1],
            [1. / brw2, 1. / brw2, 2. / brw2, 2. / brw2]
        ]
        self.cascade_rcnn_loss_weight = [1.0, 0.5, 0.25]

    def build(self, feed_vars, mode='train'):
        im = feed_vars['image']
        assert mode in ['train', 'test'], \
            "only 'train' and 'test' mode is supported"

        if mode == 'train':
            required_fields = [
                'gt_label', 'gt_box', 'gt_mask', 'is_crowd', 'im_info'
            ]
        else:
            required_fields = ['im_shape', 'im_info']

        for var in required_fields:
            assert var in feed_vars, \
                "{} has no {} field".format(feed_vars, var)

        if mode == 'train':
            gt_box = feed_vars['gt_box']
            is_crowd = feed_vars['is_crowd']

        im_info = feed_vars['im_info']

        # backbone
        body_feats = self.backbone(im)

        # FPN
        if self.fpn is not None:
            body_feats, spatial_scale = self.fpn.get_output(body_feats)

        # rpn proposals
        rpn_rois = self.rpn_head.get_proposals(body_feats, im_info, mode=mode)

        if mode == 'train':
            rpn_loss = self.rpn_head.get_loss(im_info, gt_box, is_crowd)
        else:
            if self.rpn_only:
                im_scale = fluid.layers.slice(
                    im_info, [1], starts=[2], ends=[3])
117 118
                im_scale = fluid.layers.sequence_expand(im_scale, rpn_rois)
                rois = rpn_rois / im_scale
L
LordAaron 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
                return {'proposal': rois}

        proposal_list = []
        roi_feat_list = []
        rcnn_pred_list = []
        rcnn_target_list = []

        proposals = None
        bbox_pred = None
        for i in range(3):
            if i > 0:
                refined_bbox = self._decode_box(
                    proposals,
                    bbox_pred,
                    curr_stage=i - 1, )
            else:
                refined_bbox = rpn_rois

            if mode == 'train':
                outs = self.bbox_assigner(
                    input_rois=refined_bbox, feed_vars=feed_vars, curr_stage=i)

                proposals = outs[0]
                rcnn_target_list.append(outs)
            else:
                proposals = refined_bbox
            proposal_list.append(proposals)

            # extract roi features
            roi_feat = self.roi_extractor(body_feats, proposals, spatial_scale)
            roi_feat_list.append(roi_feat)

            # bbox head
            cls_score, bbox_pred = self.bbox_head.get_output(
                roi_feat,
                wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i],
                name='_' + str(i + 1) if i > 0 else '')
            rcnn_pred_list.append((cls_score, bbox_pred))

        # get mask rois
        rois = proposal_list[2]

        if mode == 'train':
            loss = self.bbox_head.get_loss(rcnn_pred_list, rcnn_target_list,
                                           self.cascade_rcnn_loss_weight)
            loss.update(rpn_loss)

            labels_int32 = rcnn_target_list[2][1]

            mask_rois, roi_has_mask_int32, mask_int32 = self.mask_assigner(
                rois=rois,
                gt_classes=feed_vars['gt_label'],
                is_crowd=feed_vars['is_crowd'],
                gt_segms=feed_vars['gt_mask'],
                im_info=feed_vars['im_info'],
                labels_int32=labels_int32)

            if self.fpn is None:
                bbox_head_feat = self.bbox_head.get_head_feat()
                feat = fluid.layers.gather(bbox_head_feat, roi_has_mask_int32)
            else:
                feat = self.roi_extractor(
                    body_feats, mask_rois, spatial_scale, is_mask=True)
            mask_loss = self.mask_head.get_loss(feat, mask_int32)
            loss.update(mask_loss)

            total_loss = fluid.layers.sum(list(loss.values()))
            loss.update({'loss': total_loss})
            return loss
        else:
            if self.fpn is None:
                last_feat = body_feats[list(body_feats.keys())[-1]]
                roi_feat = self.roi_extractor(last_feat, rois)
            else:
                roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)

            bbox_pred = self.bbox_head.get_prediction(
W
wangguanzhong 已提交
196 197 198
                im_info, feed_vars['im_shape'], roi_feat_list, rcnn_pred_list,
                proposal_list, self.cascade_bbox_reg_weights,
                self.cls_agnostic_bbox_reg)
L
LordAaron 已提交
199 200 201 202 203 204 205 206 207 208 209

            bbox_pred = bbox_pred['bbox']

            # share weight
            bbox_shape = fluid.layers.shape(bbox_pred)
            bbox_size = fluid.layers.reduce_prod(bbox_shape)
            bbox_size = fluid.layers.reshape(bbox_size, [1, 1])
            size = fluid.layers.fill_constant([1, 1], value=6, dtype='int32')
            cond = fluid.layers.less_than(x=bbox_size, y=size)

            mask_pred = fluid.layers.create_global_var(
W
wangguanzhong 已提交
210 211 212 213 214
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=False,
                name='mask_pred')
L
LordAaron 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

            with fluid.layers.control_flow.Switch() as switch:
                with switch.case(cond):
                    fluid.layers.assign(input=bbox_pred, output=mask_pred)
                with switch.default():
                    bbox = fluid.layers.slice(
                        bbox_pred, [1], starts=[2], ends=[6])

                    im_scale = fluid.layers.slice(
                        im_info, [1], starts=[2], ends=[3])
                    im_scale = fluid.layers.sequence_expand(im_scale, bbox)

                    mask_rois = bbox * im_scale
                    if self.fpn is None:
                        mask_feat = self.roi_extractor(last_feat, mask_rois)
                        mask_feat = self.bbox_head.get_head_feat(mask_feat)
                    else:
                        mask_feat = self.roi_extractor(
                            body_feats, mask_rois, spatial_scale, is_mask=True)

                    mask_out = self.mask_head.get_prediction(mask_feat, bbox)
                    fluid.layers.assign(input=mask_out, output=mask_pred)
            return {'bbox': bbox_pred, 'mask': mask_pred}

    def _decode_box(self, proposals, bbox_pred, curr_stage):
        rcnn_loc_delta_r = fluid.layers.reshape(
            bbox_pred, (-1, self.cls_agnostic_bbox_reg, 4))
        # only use fg box delta to decode box
        rcnn_loc_delta_s = fluid.layers.slice(
            rcnn_loc_delta_r, axes=[1], starts=[1], ends=[2])
        refined_bbox = fluid.layers.box_coder(
            prior_box=proposals,
            prior_box_var=self.cascade_bbox_reg_weights[curr_stage],
            target_box=rcnn_loc_delta_s,
            code_type='decode_center_size',
            box_normalized=False,
            axis=1, )
        refined_bbox = fluid.layers.reshape(refined_bbox, shape=[-1, 4])

        return refined_bbox

    def train(self, feed_vars):
        return self.build(feed_vars, 'train')

    def eval(self, feed_vars):
        return self.build(feed_vars, 'test')

    def test(self, feed_vars):
        return self.build(feed_vars, 'test')