operator.cc 29.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
19

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
22
#include "paddle/fluid/framework/lod_tensor.h"
23
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/framework/shape_inference.h"
25
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/var_type.h"
27
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
28

D
dzhwinter 已提交
29
DECLARE_bool(benchmark);
C
chengduoZH 已提交
30 31 32
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
33

Q
Qiao Longfei 已提交
34 35 36
namespace paddle {
namespace framework {

37 38 39 40 41 42
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
43

Q
qiaolongfei 已提交
44 45
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
46
    return var->Get<framework::LoDTensor>().type();
Q
qiaolongfei 已提交
47
  } else if (var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
48
    return var->Get<framework::SelectedRows>().value().type();
Q
qiaolongfei 已提交
49 50 51 52 53
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

54 55
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
56
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
57 58
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
59 60
  }

M
minqiyang 已提交
61 62
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
63
    if (UNLIKELY(!tensor.IsInitialized())) {
64
      return DDim({-1});
65
    }
M
minqiyang 已提交
66 67 68 69 70 71 72
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
73 74 75 76 77
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
78 79 80 81 82 83
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
84 85 86 87 88
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
89

M
minqiyang 已提交
90 91 92
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
93 94
      return "";
    }
Y
Yu Yang 已提交
95
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
96
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
97 98 99 100
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
101
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
102
    }
D
dzhwinter 已提交
103 104 105 106 107
  } else {
    return "";
  }
}

108 109 110 111 112 113
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
114 115
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
116 117 118 119 120
  }

  return -1;
}

Q
Qiao Longfei 已提交
121 122 123 124 125 126 127 128
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
129 130 131
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
132 133
      return default_lod;
    }
M
minqiyang 已提交
134
    return tensor.lod();
Q
Qiao Longfei 已提交
135 136 137 138 139
  } else {
    return default_lod;
  }
}

140
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
M
minqiyang 已提交
141
  VLOG(4) << place << " " << DebugStringEx(&scope);
142
  if (platform::is_gpu_place(place)) {
143
#ifndef PADDLE_WITH_CUDA
144
    PADDLE_THROW("Cannot run operator on place %s", place);
145
#else
146 147
    auto dev_id = boost::get<platform::CUDAPlace>(place).device;
    platform::SetDeviceId(dev_id);
148 149
#endif
  }
150

P
peizhilin 已提交
151 152 153
  // The profile has a process-wide mutex, results in serious performance issue
  // in concurrency scenerio. Here use an `if` to fix this issue.
  // Please not remove the `if`, ask @Superjomn if there are any concern.
154 155 156 157
  if (platform::IsProfileEnabled()) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::RecordEvent record_event(Type(), pool.Get(place));
    RunImpl(scope, place);
P
peizhilin 已提交
158
  } else {
159 160
    RunImpl(scope, place);
  }
M
minqiyang 已提交
161
  VLOG(3) << place << " " << DebugStringEx(&scope);
162 163
}

164 165 166 167 168 169 170 171
bool OperatorBase::HasInputs(const std::string& name) const {
  if (inputs_.find(name) != inputs_.end()) {
    return true;
  } else {
    return false;
  }
}

172
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
173
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
174
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
175 176
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
177
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
178 179
}

Y
Yu Yang 已提交
180 181
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
182
  auto it = inputs_.find(name);
183 184
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
185
  return it->second;
Y
Yan Chunwei 已提交
186 187
}

188
bool OperatorBase::HasOutputs(const std::string& name) const {
189
  if (outputs_.find(name) != outputs_.end()) {
190 191 192 193 194 195
    return true;
  } else {
    return false;
  }
}

196
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
197
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
198
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
199 200
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
201
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
202 203
}

Y
Yu Yang 已提交
204 205
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
206
  auto it = outputs_.find(name);
207 208
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
209
  return it->second;
Y
Yan Chunwei 已提交
210 211
}

212
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
213
  std::stringstream ss;
Y
Yu Yang 已提交
214
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
215 216
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
217 218
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
219 220
      auto var_name = input.second[i];
      ss << var_name;
221
      if (scope) {
Q
Qiao Longfei 已提交
222 223 224 225 226 227 228 229 230 231 232
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
233
        }
234
      }
Y
Yu Yang 已提交
235 236 237
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
238
    }
Y
Yu Yang 已提交
239
    ss << "]";
Y
Yu Yang 已提交
240 241
    ++it;
    if (it != inputs_.end()) {
242 243
      ss << ", ";
    }
Q
Qiao Longfei 已提交
244
  }
Y
Yu Yang 已提交
245
  ss << "}, outputs:{";
Y
Yu Yang 已提交
246 247
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
248 249
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
250 251
      auto var_name = output.second[i];
      ss << var_name;
252
      if (scope) {
Q
Qiao Longfei 已提交
253 254 255 256 257 258 259
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
260 261
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
Q
Qiao Longfei 已提交
262 263
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
264
        }
265
      }
Y
Yu Yang 已提交
266 267 268
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
269
    }
Y
Yu Yang 已提交
270
    ss << "]";
Y
Yu Yang 已提交
271 272
    ++it;
    if (it != outputs_.end()) {
273 274
      ss << ", ";
    }
Q
Qiao Longfei 已提交
275
  }
Y
Yu Yang 已提交
276
  ss << "}.";
Q
Qiao Longfei 已提交
277 278 279
  return ss.str();
}

Y
Yu Yang 已提交
280
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
281 282
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
283 284
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
285 286
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
287
}
288

Q
qijun 已提交
289 290
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
291
  for (auto& o : inputs_) {
Q
qijun 已提交
292 293 294 295 296 297
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
298 299 300 301 302 303 304 305 306 307
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
308
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
309 310

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
311
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
312 313 314 315 316 317 318 319 320
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
321 322
}

323 324 325
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
326
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
327 328

  for (auto& in : op_info->Proto().inputs()) {
329 330 331 332
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
333 334 335
  }

  for (auto& out : op_info->Proto().outputs()) {
336 337 338 339 340
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
357
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
358
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
359 360
}

C
chengduo 已提交
361
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
362 363 364 365
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
366
  } else {
Y
Yang Yang 已提交
367
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
C
chengduo 已提交
368
                 var.Type().name());
Q
QI JUN 已提交
369 370 371
  }
}

C
chengduo 已提交
372
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
373
  if (var->IsType<LoDTensor>()) {
374
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
375
  } else if (var->IsType<SelectedRows>()) {
376
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
377
  } else {
Y
Yang Yang 已提交
378 379
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
380 381 382
  }
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

415
template <>
416
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
417
  return Input<LoDTensor>(name);
418 419 420
}

template <>
421
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
422 423 424 425
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
426
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
427
                 [&](const std::string& sub_name) -> const Tensor* {
428
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
429 430 431 432 433 434
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
                       sub_name, var->Type().name());
                   return &(var->Get<LoDTensor>());
435
                 });
436 437 438 439
  return res;
}

template <>
440
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
441
  return Output<LoDTensor>(name);
442 443 444
}

template <>
445
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
446 447 448 449
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
450
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
451
                 [&](const std::string& sub_name) -> Tensor* {
452
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
453 454 455 456 457 458
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
                       sub_name, var->Type().name());
                   return var->GetMutable<LoDTensor>();
459
                 });
460 461 462
  return res;
}

Y
Yu Yang 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

478 479 480 481 482 483
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
484 485 486 487
    // has only one input
    const auto& ins = op_.Inputs();
    auto it = ins.find(name);
    if (it == ins.end()) {
488 489
      return false;
    }
490
    const auto& in = it->second;
T
tensor-tang 已提交
491
    if (in.size() == 0 || in[0] == kEmptyVarName) {
492 493
      return false;
    }
T
tensor-tang 已提交
494
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
495
                      "Input %s should not have more than one inputs", name);
496
    return scope_.FindVar(in[0]) != nullptr;
497 498 499
  }

  bool HasOutput(const std::string& name) const override {
500 501 502 503
    // has only one output
    const auto& outs = op_.Outputs();
    auto it = outs.find(name);
    if (it == outs.end()) {
504 505
      return false;
    }
506
    const auto& out = it->second;
T
tensor-tang 已提交
507
    if (out.size() == 0 || out[0] == kEmptyVarName) {
508 509
      return false;
    }
T
tensor-tang 已提交
510 511
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
512
    return scope_.FindVar(out[0]) != nullptr;
513 514 515
  }

  bool HasInputs(const std::string& name) const override {
516 517 518
    if (!op_.HasInputs(name)) {
      return false;
    }
519 520 521 522 523 524 525 526 527 528 529 530 531
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
532 533 534
    if (!op_.HasOutputs(name)) {
      return false;
    }
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    const std::string& input_n = Inputs(in)[i];
    const std::string& output_n = Outputs(out)[j];

    Variable* in_var = scope_.FindVar(input_n);
    Variable* out_var = scope_.FindVar(output_n);
    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
                   "The type of %s and %s is not the same.", output_n,
                   GetDim(input_n));

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
589 590
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
591 592 593 594 595
    const std::vector<std::string>& inputs = Inputs(in);
    const std::vector<std::string>& outputs = Outputs(out);
    PADDLE_ENFORCE_LT(i, inputs.size());
    PADDLE_ENFORCE_LT(j, outputs.size());
    Variable* in_var = scope_.FindVar(inputs.at(i));
Q
Qiao Longfei 已提交
596
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
597
    Variable* out_var = scope_.FindVar(outputs.at(j));
Q
Qiao Longfei 已提交
598 599 600 601 602
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
603

M
mozga-intel 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
623 624
  }

C
chengduo 已提交
625 626 627 628 629
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

630 631 632
  bool IsRuntime() const override { return true; }

 protected:
633 634
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
F
fengjiayi 已提交
635
    PADDLE_ENFORCE_NOT_NULL(var);
636 637 638 639 640
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
641 642 643 644 645 646 647
      PADDLE_THROW(
          "Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
          "type_id is %s.",
          name, var->Type().name());
    }
  }

F
fengjiayi 已提交
648
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
649
    PADDLE_THROW("Only compile time support this method");
650 651 652 653 654 655 656 657 658
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
659 660
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
661 662 663
    }
  }

F
fengjiayi 已提交
664 665
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
666
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
667 668
  }

669
  proto::VarType::Type GetVarType(const std::string& name) const override {
670 671 672 673
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

F
fengjiayi 已提交
674 675 676 677
  InferShapeVarPtr GetVarPtr(const std::string& name) override {
    return scope_.FindVar(name);
  }

678
 private:
679 680 681 682
  const OperatorBase& op_;
  const Scope& scope_;
};

C
chengduoZH 已提交
683 684 685 686 687
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
688 689
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
690 691 692 693 694 695 696 697
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

B
baojun-nervana 已提交
698 699
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
                                           const platform::Place& place) const {
B
baojun-nervana 已提交
700 701 702 703
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
}

704 705
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
706 707
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
708
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
709
  auto* dev_ctx = pool.Get(place);
710

711 712 713 714
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
715 716
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
717 718
  }

Q
qiaolongfei 已提交
719 720
  OpKernelMap& kernels = kernels_iter->second;

721 722
  // TODO(dzhwinter) : kernel fallback mechanism will be added when all the
  // transform functions are ready.
Q
qiaolongfei 已提交
723

724 725 726 727
  // for (auto& candidate : kKernelPriority) {
  //   Do selection
  // }

Y
yuyang18 已提交
728 729
  auto expected_kernel_key =
      this->GetExpectedKernelType(ExecutionContext(*this, scope, *dev_ctx));
M
minqiyang 已提交
730
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
Q
qiaolongfei 已提交
731

732
  auto kernel_iter = kernels.find(expected_kernel_key);
733
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
734
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
735 736
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
M
minqiyang 已提交
737
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
738 739 740 741 742
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
743 744 745 746 747
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
748 749 750 751
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
      TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
752

Y
yuyang18 已提交
753 754 755 756 757 758
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
759
  }
Q
QI JUN 已提交
760

Y
yuyang18 已提交
761
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx));
D
dzhwinter 已提交
762

Y
yuyang18 已提交
763 764 765
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
766 767
  }

D
dzhwinter 已提交
768
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
769
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
770
    dev_ctx->Wait();
D
dzhwinter 已提交
771
  }
C
chengduoZH 已提交
772 773 774

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
775
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
776 777 778
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
779 780
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
781 782 783
      }
    }
  }
Q
Qiao Longfei 已提交
784
}
Y
yuyang18 已提交
785 786 787 788
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
789
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
790 791
    auto* original_tensor =
        GetMutableLoDTensorOrSelectedRowsValueFromVar(scope.FindVar(var_name));
C
chengduo 已提交
792 793 794
    auto* var = transfer_scope.FindVar(var_name);
    PADDLE_ENFORCE(var != nullptr, "The var[%s] should not be nullptr",
                   var_name);
C
chengduo 已提交
795
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
796 797 798 799 800 801 802 803 804 805 806 807
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

Scope* OperatorWithKernel::TryTransferData(
    const Scope& scope, const OpKernelType& expected_kernel_key,
    std::vector<std::string>* transfered_inplace_vars) const {
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
808
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
809 810 811
        continue;
      }

C
chengduo 已提交
812
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
830 831
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
832

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
      if (!run_by_executor_) {
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
848
      }
849
      if (!new_scope) {
Y
yuyang18 已提交
850 851 852 853
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
854

Y
yuyang18 已提交
855
      Tensor out;
Y
yuyang18 已提交
856
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
857 858 859 860 861 862
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
863

864
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
865 866 867
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
868
  std::string last_input_name;
Y
Yu Yang 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
Y
Yu Yang 已提交
882
          int tmp = static_cast<int>(t->type());
883 884
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
885 886
              "DataType of Paddle Op %s must be the same. Get %s(%d) != %s(%d)",
              Type(), last_input_name, data_type, ipt_name, tmp);
Y
Yu Yang 已提交
887
          data_type = tmp;
888
          last_input_name = ipt_name;
Y
Yu Yang 已提交
889 890 891 892 893
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
894
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
895
}
896

897 898 899 900 901 902 903 904
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
905 906
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
907 908
}

Q
Qiao Longfei 已提交
909
}  // namespace framework
L
liaogang 已提交
910
}  // namespace paddle