tester_helper.h 24.3 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
L
luotao1 已提交
20
#include <memory>
T
Tao Luo 已提交
21
#include <string>
L
luotao1 已提交
22
#include <thread>  // NOLINT
L
luotao1 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <vector>
Y
Yiqun Liu 已提交
25 26 27
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
28
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
29
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
30 31 32
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
33
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
36
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
40
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
41 42
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
43
DEFINE_string(refer_result, "", "reference result for comparison");
44 45 46 47
DEFINE_int32(batch_size, 1, "batch size");
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
// setting iterations to 0 means processing the whole dataset
DEFINE_int32(iterations, 0, "number of batches to process");
L
luotao1 已提交
48 49 50
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
51 52
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
53 54
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
55
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
56
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
L
luotao1 已提交
57
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
L
luotao1 已提交
58

59
DECLARE_bool(profile);
L
luotao1 已提交
60
DECLARE_int32(paddle_num_threads);
61

L
luotao1 已提交
62 63 64
namespace paddle {
namespace inference {

65 66 67 68 69 70 71 72 73 74 75 76 77
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

78
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
79
  const auto *analysis_config =
80
      reinterpret_cast<const AnalysisConfig *>(config);
81
  if (use_analysis) {
82
    LOG(INFO) << *analysis_config;
83 84
    return;
  }
85
  LOG(INFO) << analysis_config->ToNativeConfig();
86
}
Y
Yan Chunwei 已提交
87

88
// Compare result between two PaddleTensor
L
luotao1 已提交
89
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
90
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
91
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
92
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
93 94
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
95
    auto &ref_out = ref_outputs[i];
96 97
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
98
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
Y
Yan Chunwei 已提交
114
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
T
tensor-tang 已提交
115 116 117
        }
        break;
      }
118 119 120 121 122 123 124 125
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = static_cast<int32_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
L
luotao1 已提交
126 127 128 129
    }
  }
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = ref_out.data<int64_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = ref_out.data<float>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
        }
        break;
      }
L
luotao1 已提交
161 162 163 164 165 166 167 168 169
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = ref_out.data<int32_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
170 171 172 173
    }
  }
}

174
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
175
    const PaddlePredictor::Config *config, bool use_analysis = true) {
176
  const auto *analysis_config =
177
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
178
  if (use_analysis) {
179
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
180
  }
181 182
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
183 184
}

185
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
186

187
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
188
                                                   int *num_ops) {
189
  std::unordered_map<std::string, int> res;
190
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
191 192 193 194 195 196
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
197 198 199 200
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
201 202
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
203 204 205 206
      ++num;
    }
  }
  *num_ops = num;
207
  return *fusion_status;
T
Tao Luo 已提交
208 209
}

T
Tao Luo 已提交
210
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
211 212
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
213
                       std::string params_filename = "params",
N
nhzlx 已提交
214 215
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
216 217
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
218 219 220 221 222 223 224 225 226 227 228
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
245
    size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1},
T
tensor-tang 已提交
246 247 248 249 250 251
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
252 253
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
254
    }
T
Tao Luo 已提交
255 256 257 258
  }
  (*inputs).emplace_back(input_slots);
}

259 260 261 262 263 264 265 266 267 268 269 270
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
271 272 273 274 275 276 277 278 279 280 281
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
L
luotao1 已提交
282 283
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
L
luotao1 已提交
284 285 286 287 288
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
289

L
luotao1 已提交
290 291
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
292 293
                      std::vector<std::vector<PaddleTensor>> *outputs,
                      int num_threads, int tid) {
L
luotao1 已提交
294 295 296 297 298
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
299
  outputs->resize(1);
L
luotao1 已提交
300 301 302
  Timer warmup_timer;
  warmup_timer.tic();
  if (!FLAGS_zero_copy) {
303
    predictor->Run(inputs[0], &(*outputs)[0], batch_size);
L
luotao1 已提交
304 305
  } else {
    predictor->ZeroCopyRun();
306
  }
L
luotao1 已提交
307 308 309 310 311
  PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
  if (FLAGS_profile) {
    paddle::platform::ResetProfiler();
  }
}
312

L
luotao1 已提交
313 314
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
315 316
                   std::vector<std::vector<PaddleTensor>> *outputs,
                   int num_threads, int tid) {
L
luotao1 已提交
317
  int num_times = FLAGS_repeat;
318 319 320 321 322 323 324
  int iterations = inputs.size();  // process the whole dataset ...
  if (FLAGS_iterations > 0 && FLAGS_iterations < inputs.size())
    iterations =
        FLAGS_iterations;  // ... unless the number of iterations is set
  outputs->resize(iterations);
  LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads
            << ", run " << num_times << " times...";
L
luotao1 已提交
325 326
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
327
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
328
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
329
#endif
L
luotao1 已提交
330 331
  if (!FLAGS_zero_copy) {
    run_timer.tic();
332
    for (size_t i = 0; i < iterations; i++) {
L
luotao1 已提交
333
      for (int j = 0; j < num_times; j++) {
334
        predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size);
335
      }
L
luotao1 已提交
336
    }
L
luotao1 已提交
337 338
    elapsed_time = run_timer.toc();
  } else {
339
    for (size_t i = 0; i < iterations; i++) {
L
luotao1 已提交
340 341 342 343 344 345 346 347
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
    }
  }
Y
Yiqun Liu 已提交
348
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
349
  ProfilerStop();
Y
Yiqun Liu 已提交
350
#endif
N
nhzlx 已提交
351

352 353 354
  auto batch_latency = elapsed_time / (iterations * num_times);
  PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency,
            iterations);
L
luotao1 已提交
355 356 357
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
358 359
    benchmark.SetBatchSize(FLAGS_batch_size);
    benchmark.SetLatency(batch_latency);
L
luotao1 已提交
360
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
361 362 363
  }
}

L
luotao1 已提交
364 365 366
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
367
    std::vector<std::vector<PaddleTensor>> *outputs, bool use_analysis = true) {
L
luotao1 已提交
368
  auto predictor = CreateTestPredictor(config, use_analysis);
369 370 371
  PredictionWarmUp(predictor.get(), inputs, outputs, FLAGS_paddle_num_threads,
                   0);
  PredictionRun(predictor.get(), inputs, outputs, FLAGS_paddle_num_threads, 0);
L
luotao1 已提交
372 373
}

L
luotao1 已提交
374
void TestMultiThreadPrediction(
375
    const PaddlePredictor::Config *config,
376
    const std::vector<std::vector<PaddleTensor>> &inputs,
377
    std::vector<std::vector<PaddleTensor>> *outputs, int num_threads,
T
Tao Luo 已提交
378
    bool use_analysis = true) {
L
luotao1 已提交
379
  std::vector<std::thread> threads;
L
luotao1 已提交
380 381 382 383 384
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
385

L
luotao1 已提交
386 387 388 389
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
390
      std::vector<std::vector<PaddleTensor>> outputs_tid;
L
luotao1 已提交
391
      auto &predictor = predictors[tid];
L
luotao1 已提交
392 393 394
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
395
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
396 397
      }
#endif
398 399
      PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads, tid);
      PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid);
L
luotao1 已提交
400 401 402 403 404 405 406
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

407
void TestPrediction(const PaddlePredictor::Config *config,
408
                    const std::vector<std::vector<PaddleTensor>> &inputs,
409 410
                    std::vector<std::vector<PaddleTensor>> *outputs,
                    int num_threads, bool use_analysis = FLAGS_use_analysis) {
411
  PrintConfig(config, use_analysis);
L
luotao1 已提交
412
  if (num_threads == 1) {
T
Tao Luo 已提交
413
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
414
  } else {
T
Tao Luo 已提交
415 416
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
417 418 419
  }
}

420 421 422 423
void CompareTopAccuracy(
    const std::vector<std::vector<PaddleTensor>> &output_slots_quant,
    const std::vector<std::vector<PaddleTensor>> &output_slots_ref) {
  if (output_slots_quant.size() == 0 || output_slots_ref.size() == 0)
424 425 426
    throw std::invalid_argument(
        "CompareTopAccuracy: output_slots vector is empty.");

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
  float total_accs1_quant{0};
  float total_accs1_ref{0};
  for (size_t i = 0; i < output_slots_quant.size(); ++i) {
    PADDLE_ENFORCE(output_slots_quant[i].size() >= 2UL);
    PADDLE_ENFORCE(output_slots_ref[i].size() >= 2UL);
    // second output: acc_top1
    if (output_slots_quant[i][1].lod.size() > 0 ||
        output_slots_ref[i][1].lod.size() > 0)
      throw std::invalid_argument(
          "CompareTopAccuracy: top1 accuracy output has nonempty LoD.");
    if (output_slots_quant[i][1].dtype != paddle::PaddleDType::FLOAT32 ||
        output_slots_ref[i][1].dtype != paddle::PaddleDType::FLOAT32)
      throw std::invalid_argument(
          "CompareTopAccuracy: top1 accuracy output is of a wrong type.");
    total_accs1_quant +=
        *static_cast<float *>(output_slots_quant[i][1].data.data());
    total_accs1_ref +=
        *static_cast<float *>(output_slots_ref[i][1].data.data());
  }
  float avg_acc1_quant = total_accs1_quant / output_slots_quant.size();
  float avg_acc1_ref = total_accs1_ref / output_slots_ref.size();

  LOG(INFO) << "Avg top1 INT8 accuracy: " << std::fixed << std::setw(6)
            << std::setprecision(4) << avg_acc1_quant;
  LOG(INFO) << "Avg top1 FP32 accuracy: " << std::fixed << std::setw(6)
            << std::setprecision(4) << avg_acc1_ref;
453
  LOG(INFO) << "Accepted accuracy drop threshold: " << FLAGS_quantized_accuracy;
454
  CHECK_LE(std::abs(avg_acc1_quant - avg_acc1_ref), FLAGS_quantized_accuracy);
455 456
}

L
luotao1 已提交
457 458 459 460 461 462 463 464 465
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
466 467 468 469
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
470 471 472 473 474 475
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
476
void CompareNativeAndAnalysis(
477
    const PaddlePredictor::Config *config,
478
    const std::vector<std::vector<PaddleTensor>> &inputs) {
479
  PrintConfig(config, true);
480
  std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
481
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
482
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
483 484 485
  PADDLE_ENFORCE(native_outputs.size() > 0, "Native output is empty.");
  PADDLE_ENFORCE(analysis_outputs.size() > 0, "Analysis output is empty.");
  CompareResult(analysis_outputs.back(), native_outputs.back());
T
Tao Luo 已提交
486 487
}

488
void CompareQuantizedAndAnalysis(
489
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
490
    const std::vector<std::vector<PaddleTensor>> &inputs) {
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
  PADDLE_ENFORCE_EQ(inputs[0][0].shape[0], FLAGS_batch_size,
                    "Input data has to be packed batch by batch.");
  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true);

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> quantized_outputs;
  TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true);

  LOG(INFO) << "--- comparing outputs --- ";
509 510 511
  CompareTopAccuracy(quantized_outputs, analysis_outputs);
}

N
nhzlx 已提交
512 513 514 515 516 517 518 519 520 521
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
void CompareAnalysisAndZeroCopy(
    PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
  reinterpret_cast<AnalysisConfig *>(config)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config, true);
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
541
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
542 543 544 545 546
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

L
luotao1 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
618
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1},
L
luotao1 已提交
619
                                  [](int a, int b) { return a * b; });
620
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1},
L
luotao1 已提交
621 622 623 624 625 626 627
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
Y
Yu Yang 已提交
628
    if (a.type() == framework::proto::VarType::FP32) {
L
luotao1 已提交
629 630 631 632 633 634 635 636
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
Y
Yu Yang 已提交
637
    } else if (a.type() == framework::proto::VarType::INT64) {
L
luotao1 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
669 670
}  // namespace inference
}  // namespace paddle