tester_helper.h 16.2 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
T
Tao Luo 已提交
20
#include <string>
L
luotao1 已提交
21 22
#include <thread>  // NOLINT
#include <vector>
Y
Yiqun Liu 已提交
23 24 25
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
26

L
luotao1 已提交
27
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
28
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
29 30 31
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
32
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
33
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
34
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
35
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
36
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
37 38
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
39
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
40 41
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
42
DEFINE_string(refer_result, "", "reference result for comparison");
L
luotao1 已提交
43 44 45 46
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
47 48
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
49 50
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
51
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
L
luotao1 已提交
52

53
DECLARE_bool(profile);
L
luotao1 已提交
54
DECLARE_int32(paddle_num_threads);
55

L
luotao1 已提交
56 57 58
namespace paddle {
namespace inference {

N
nhzlx 已提交
59 60 61 62 63 64 65
float Random(float low, float high) {
  static std::random_device rd;
  static std::mt19937 mt(rd());
  std::uniform_real_distribution<double> dist(low, high);
  return dist(mt);
}

66
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
67 68
  const auto *analysis_config =
      reinterpret_cast<const contrib::AnalysisConfig *>(config);
69
  if (use_analysis) {
70
    LOG(INFO) << *analysis_config;
71 72
    return;
  }
73
  LOG(INFO) << analysis_config->ToNativeConfig();
74
}
Y
Yan Chunwei 已提交
75

L
luotao1 已提交
76
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
77
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
78
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
79
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
80 81
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
82
    auto &ref_out = ref_outputs[i];
83 84
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
85
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
Y
Yan Chunwei 已提交
101
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
T
tensor-tang 已提交
102 103 104
        }
        break;
      }
L
luotao1 已提交
105 106 107 108
    }
  }
}

109
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
110
    const PaddlePredictor::Config *config, bool use_analysis = true) {
111 112
  const auto *analysis_config =
      reinterpret_cast<const contrib::AnalysisConfig *>(config);
T
Tao Luo 已提交
113
  if (use_analysis) {
114
    return CreatePaddlePredictor<contrib::AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
115
  }
116 117
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
118 119
}

120
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
121

122
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
123
                                                   int *num_ops) {
124
  std::unordered_map<std::string, int> res;
125
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
126 127 128 129 130 131
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
132 133 134 135
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
136 137
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
138 139 140 141
      ++num;
    }
  }
  *num_ops = num;
142
  return *fusion_status;
T
Tao Luo 已提交
143 144
}

T
Tao Luo 已提交
145
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
146 147
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
148 149
                       std::string params_filename = "params",
                       const std::vector<std::string> *feed_names = nullptr) {
T
Tao Luo 已提交
150 151
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
152 153 154 155 156 157 158 159 160 161 162
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
    size_t len = std::accumulate(shape.begin(), shape.end(), 1,
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
186
      *(input_data + j) = Random(0.0, 1.0) / 10.;
T
tensor-tang 已提交
187
    }
T
Tao Luo 已提交
188 189 190 191
  }
  (*inputs).emplace_back(input_slots);
}

192 193 194 195 196 197 198 199 200 201 202 203
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
204
void TestOneThreadPrediction(
205
    const PaddlePredictor::Config *config,
206
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
207
    std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
L
luotao1 已提交
208 209
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
210
  auto predictor = CreateTestPredictor(config, use_analysis);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

  // warmup run
  LOG(INFO) << "Warm up run...";
  {
    Timer warmup_timer;
    warmup_timer.tic();
    predictor->Run(inputs[0], outputs, batch_size);
    PrintTime(batch_size, 1, 1, 0, warmup_timer.toc(), 1);
    if (FLAGS_profile) {
      paddle::platform::ResetProfiler();
    }
  }

  LOG(INFO) << "Run " << num_times << " times...";
  {
    Timer run_timer;
    run_timer.tic();
Y
Yiqun Liu 已提交
228 229 230
#ifdef WITH_GPERFTOOLS
    ProfilerStart("paddle_inference.prof");
#endif
231 232 233 234
    for (int i = 0; i < num_times; i++) {
      for (size_t j = 0; j < inputs.size(); j++) {
        predictor->Run(inputs[j], outputs, batch_size);
      }
L
luotao1 已提交
235
    }
Y
Yiqun Liu 已提交
236 237 238
#ifdef WITH_GPERFTOOLS
    ProfilerStop();
#endif
N
nhzlx 已提交
239

Y
Yiqun Liu 已提交
240
    double latency = run_timer.toc() / (num_times > 1 ? num_times : 1);
N
nhzlx 已提交
241 242 243 244 245 246 247 248
    PrintTime(batch_size, num_times, 1, 0, latency, inputs.size());
    if (FLAGS_record_benchmark) {
      Benchmark benchmark;
      benchmark.SetName(FLAGS_model_name);
      benchmark.SetBatchSize(batch_size);
      benchmark.SetLatency(latency);
      benchmark.PersistToFile("benchmark_record.txt");
    }
L
luotao1 已提交
249 250 251 252
  }
}

void TestMultiThreadPrediction(
253
    const PaddlePredictor::Config *config,
254
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
255 256
    std::vector<PaddleTensor> *outputs, int num_threads,
    bool use_analysis = true) {
L
luotao1 已提交
257 258 259
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  std::vector<std::thread> threads;
260
  auto main_predictor = CreateTestPredictor(config, use_analysis);
261 262

  size_t total_time{0};
L
luotao1 已提交
263 264 265 266 267
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<PaddleTensor> outputs_tid;
268 269 270
      // To ensure the thread binding correctly,
      // please clone inside the threadpool.
      auto predictor = main_predictor->Clone();
L
luotao1 已提交
271 272 273
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
274
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
275 276
      }
#endif
T
Tao Luo 已提交
277 278 279 280 281 282 283 284 285 286

      // warmup run
      LOG(INFO) << "Running thread " << tid << ", warm up run...";
      {
        Timer warmup_timer;
        warmup_timer.tic();
        predictor->Run(inputs[0], outputs, batch_size);
        PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
        if (FLAGS_profile) {
          paddle::platform::ResetProfiler();
L
luotao1 已提交
287 288
        }
      }
289

T
Tao Luo 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
      LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
      {
        Timer timer;
        timer.tic();
        for (int i = 0; i < num_times; i++) {
          for (const auto &input : inputs) {
            ASSERT_TRUE(predictor->Run(input, &outputs_tid));
          }
        }

        auto time = timer.toc();
        total_time += time;
        PrintTime(batch_size, num_times, num_threads, tid, time / num_times,
                  inputs.size());
      }
L
luotao1 已提交
305 306 307 308 309 310 311
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

312
void TestPrediction(const PaddlePredictor::Config *config,
313
                    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
314 315
                    std::vector<PaddleTensor> *outputs, int num_threads,
                    bool use_analysis = FLAGS_use_analysis) {
316
  PrintConfig(config, use_analysis);
L
luotao1 已提交
317
  if (num_threads == 1) {
T
Tao Luo 已提交
318
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
319
  } else {
T
Tao Luo 已提交
320 321
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
322 323 324
  }
}

L
luotao1 已提交
325 326 327 328 329 330 331 332 333
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
334 335 336 337
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
338 339 340 341 342 343
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
344
void CompareNativeAndAnalysis(
345
    const PaddlePredictor::Config *config,
346
    const std::vector<std::vector<PaddleTensor>> &inputs) {
347
  PrintConfig(config, true);
T
Tao Luo 已提交
348
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
349
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
350 351 352 353
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  CompareResult(analysis_outputs, native_outputs);
}

N
nhzlx 已提交
354 355 356 357 358 359 360 361 362 363
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

L
luotao1 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
Y
Yu Yang 已提交
445
    if (a.type() == framework::proto::VarType::FP32) {
L
luotao1 已提交
446 447 448 449 450 451 452 453
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
Y
Yu Yang 已提交
454
    } else if (a.type() == framework::proto::VarType::INT64) {
L
luotao1 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
486 487
}  // namespace inference
}  // namespace paddle