analyzer_rnn2_tester.cc 5.9 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

T
Tao Luo 已提交
15
#include "paddle/fluid/inference/tests/api/tester_helper.h"
L
luotao1 已提交
16 17 18 19 20

namespace paddle {
namespace inference {

using namespace framework;  // NOLINT
T
Tao Luo 已提交
21
static std::vector<float> result_data;
L
luotao1 已提交
22 23 24 25 26

struct DataRecord {
  std::vector<std::vector<std::vector<float>>> link_step_data_all;
  std::vector<size_t> lod;
  std::vector<std::vector<float>> rnn_link_data;
T
Tao Luo 已提交
27
  size_t num_samples;  // total number of samples
L
luotao1 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  size_t batch_iter{0};
  size_t batch_size{1};
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= link_step_data_all.size()) {
      data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
                                     link_step_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod.push_back(0);
      CHECK(!data.link_step_data_all.empty()) << "empty";
      for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
        for (const auto &d : data.link_step_data_all[j]) {
          data.rnn_link_data.push_back(d);
          // calculate lod
          data.lod.push_back(data.lod.back() + 11);
        }
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
T
Tao Luo 已提交
60
    result_data.clear();
L
luotao1 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ':', &data);
      if (num_lines % 2) {  // feature
        std::vector<std::string> feature_data;
        split(data[1], ' ', &feature_data);
        std::vector<std::vector<float>> link_step_data;
        int feature_count = 1;
        std::vector<float> feature;
        for (auto &step_data : feature_data) {
          std::vector<float> tmp;
          split_to_float(step_data, ',', &tmp);
          feature.insert(feature.end(), tmp.begin(), tmp.end());
          if (feature_count % 11 == 0) {  // each sample has 11 features
            link_step_data.push_back(feature);
            feature.clear();
          }
          feature_count++;
        }
        link_step_data_all.push_back(std::move(link_step_data));
      } else {  // result
        std::vector<float> tmp;
        split_to_float(data[1], ',', &tmp);
        result_data.insert(result_data.end(), tmp.begin(), tmp.end());
      }
    }
T
Tao Luo 已提交
88
    num_samples = num_lines / 2;
L
luotao1 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
  }
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor feed_tensor;
  feed_tensor.name = "feed";
  auto one_batch = data->NextBatch();
  int token_size = one_batch.rnn_link_data.size();
  // each token has 11 features, each feature's dim is 54.
  std::vector<int> rnn_link_data_shape({token_size * 11, 54});
  feed_tensor.shape = rnn_link_data_shape;
  feed_tensor.lod.assign({one_batch.lod});
  feed_tensor.dtype = PaddleDType::FLOAT32;
  TensorAssignData<float>(&feed_tensor, one_batch.rnn_link_data);
  // Set inputs.
  input_slots->assign({feed_tensor});
}

T
Tao Luo 已提交
107
void SetConfig(AnalysisConfig *cfg) {
108 109 110 111
  cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
  cfg->SwitchIrOptim();
T
Tao Luo 已提交
112 113 114 115 116 117 118 119 120 121
}

void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
  LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
L
luotao1 已提交
122 123 124
  }
}

T
Tao Luo 已提交
125 126 127 128
// Easy for profiling independently.
TEST(Analyzer_rnn2, profile) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
129
  std::vector<std::vector<PaddleTensor>> outputs;
L
luotao1 已提交
130

T
Tao Luo 已提交
131 132
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
133 134
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
L
luotao1 已提交
135

T
Tao Luo 已提交
136 137 138
  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    // the first inference result
    PADDLE_ENFORCE_GT(outputs.size(), 0);
139 140 141
    auto output = outputs.back();
    PADDLE_ENFORCE_GT(output.size(), 0);
    size_t size = GetSize(output[0]);
T
Tao Luo 已提交
142
    PADDLE_ENFORCE_GT(size, 0);
143
    float *result = static_cast<float *>(output[0].data.data());
T
Tao Luo 已提交
144
    for (size_t i = 0; i < size; i++) {
T
Tao Luo 已提交
145
      EXPECT_NEAR(result[i], result_data[i], 1e-3);
T
Tao Luo 已提交
146
    }
L
luotao1 已提交
147
  }
T
Tao Luo 已提交
148
}
L
luotao1 已提交
149

T
Tao Luo 已提交
150 151 152 153
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_rnn2, compare) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
L
luotao1 已提交
154

T
Tao Luo 已提交
155 156
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
157 158
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
L
luotao1 已提交
159 160
}

L
luotao1 已提交
161 162 163 164 165 166 167 168 169 170 171
// Compare Deterministic result
TEST(Analyzer_rnn2, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

L
luotao1 已提交
172 173
}  // namespace inference
}  // namespace paddle