analyzer_rnn2_tester.cc 6.4 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/analyzer.h"

#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include <thread>  // NOLINT
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"

DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data path");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");

namespace paddle {
namespace inference {

using namespace framework;  // NOLINT

struct DataRecord {
  std::vector<std::vector<std::vector<float>>> link_step_data_all;
  std::vector<size_t> lod;
  std::vector<std::vector<float>> rnn_link_data;
  std::vector<float> result_data;
  size_t batch_iter{0};
  size_t batch_size{1};
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= link_step_data_all.size()) {
      data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
                                     link_step_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod.push_back(0);
      CHECK(!data.link_step_data_all.empty()) << "empty";
      for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
        for (const auto &d : data.link_step_data_all[j]) {
          data.rnn_link_data.push_back(d);
          // calculate lod
          data.lod.push_back(data.lod.back() + 11);
        }
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ':', &data);
      if (num_lines % 2) {  // feature
        std::vector<std::string> feature_data;
        split(data[1], ' ', &feature_data);
        std::vector<std::vector<float>> link_step_data;
        int feature_count = 1;
        std::vector<float> feature;
        for (auto &step_data : feature_data) {
          std::vector<float> tmp;
          split_to_float(step_data, ',', &tmp);
          feature.insert(feature.end(), tmp.begin(), tmp.end());
          if (feature_count % 11 == 0) {  // each sample has 11 features
            link_step_data.push_back(feature);
            feature.clear();
          }
          feature_count++;
        }
        link_step_data_all.push_back(std::move(link_step_data));
      } else {  // result
        std::vector<float> tmp;
        split_to_float(data[1], ',', &tmp);
        result_data.insert(result_data.end(), tmp.begin(), tmp.end());
      }
    }
  }
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor feed_tensor;
  feed_tensor.name = "feed";
  auto one_batch = data->NextBatch();
  int token_size = one_batch.rnn_link_data.size();
  // each token has 11 features, each feature's dim is 54.
  std::vector<int> rnn_link_data_shape({token_size * 11, 54});
  feed_tensor.shape = rnn_link_data_shape;
  feed_tensor.lod.assign({one_batch.lod});
  feed_tensor.dtype = PaddleDType::FLOAT32;
  TensorAssignData<float>(&feed_tensor, one_batch.rnn_link_data);
  // Set inputs.
  input_slots->assign({feed_tensor});
}

void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<float> &base_result) {
  PADDLE_ENFORCE_GT(outputs.size(), 0);
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                  [](int a, int b) { return a * b; });
    PADDLE_ENFORCE_GT(size, 0);
    float *data = static_cast<float *>(out.data.data());
    for (size_t i = 0; i < size; i++) {
      EXPECT_NEAR(data[i], base_result[i], 1e-3);
    }
  }
}
// Test with a really complicate model.
void TestRNN2Prediction() {
  AnalysisConfig config;
  config.prog_file = FLAGS_infer_model + "/__model__";
  config.param_file = FLAGS_infer_model + "/param";
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
  config.enable_ir_optim = true;
  PADDLE_ENFORCE(config.ir_mode ==
                 AnalysisConfig::IrPassMode::kExclude);  // default

  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;

  auto base_predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  auto predictor =
      CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
          config);
  std::vector<PaddleTensor> input_slots;
  DataRecord data(FLAGS_infer_data, batch_size);
  PrepareInputs(&input_slots, &data, batch_size);
  std::vector<PaddleTensor> outputs, base_outputs;

  Timer timer1;
  timer1.tic();
  for (int i = 0; i < num_times; i++) {
    base_predictor->Run(input_slots, &base_outputs);
  }
  PrintTime(batch_size, num_times, 1, 0, timer1.toc() / num_times);

  Timer timer2;
  timer2.tic();
  for (int i = 0; i < num_times; i++) {
    predictor->Run(input_slots, &outputs);
  }
  PrintTime(batch_size, num_times, 1, 0, timer2.toc() / num_times);

  CompareResult(base_outputs, data.result_data);
  CompareResult(outputs, data.result_data);
}

TEST(Analyzer, rnn2) { TestRNN2Prediction(); }

}  // namespace inference
}  // namespace paddle