cross_entropy_op.cc 14.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/cross_entropy_op.h"
S
sneaxiy 已提交
16
#include <memory>
C
chengduo 已提交
17
#include <string>
S
sneaxiy 已提交
18
#include <unordered_map>
Q
Qiao Longfei 已提交
19 20 21 22

namespace paddle {
namespace operators {

S
sneaxiy 已提交
23
class CrossEntropyOpBase : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
24 25 26
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
28 29
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
S
sneaxiy 已提交
30

Q
Qiao Longfei 已提交
31
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");
32

Q
Qiao Longfei 已提交
33 34
    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
F
stash  
fengjiayi 已提交
35 36 37
    int rank = x_dims.size();
    PADDLE_ENFORCE_EQ(rank, label_dims.size(),
                      "Input(X) and Input(Label) shall have the same rank.");
S
sneaxiy 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    bool check = true;
    if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
                                framework::product(label_dims) <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                        framework::slice_ddim(label_dims, 0, rank - 1),
                        "Input(X) and Input(Label) shall have the same shape "
                        "except the last dimension.");
    }

    if (IsSoftLabel(ctx)) {
      if (check) {
        PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
                          "If Attr(soft_label) == true, the last dimension of "
                          "Input(X) and Input(Label) should be equal.");
      }
56
    } else {
F
stash  
fengjiayi 已提交
57 58
      PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1UL,
                        "If Attr(softLabel) == false, the last dimension of "
C
caoying03 已提交
59
                        "Input(Label) should be 1.");
60
    }
61

F
fengjiayi 已提交
62 63 64
    auto y_dims = x_dims;
    y_dims[rank - 1] = 1;
    ctx->SetOutputDim("Y", y_dims);
Q
Qiao Longfei 已提交
65
    ctx->ShareLoD("X", /*->*/ "Y");
Q
Qiao Longfei 已提交
66
  }
Y
Yu Yang 已提交
67

68
 protected:
C
Cao Ying 已提交
69
  // Explicitly set that the data type of computation kernel of cross_entropy
C
caoying03 已提交
70
  // is determined by its input "X".
71
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
72
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
73 74
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.device_context());
Y
Yu Yang 已提交
75
  }
S
sneaxiy 已提交
76 77 78 79

  virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
    return ctx->Attrs().Get<bool>("soft_label");
  }
Q
Qiao Longfei 已提交
80 81
};

S
sneaxiy 已提交
82
class CrossEntropyGradientOpBase : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
83 84 85
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

S
sneaxiy 已提交
86
  void InferShape(framework::InferShapeContext* ctx) const {
Q
Qiao Longfei 已提交
87 88 89 90 91
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) shoudl be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@GRAD) should be not null.");
92

S
sneaxiy 已提交
93
    auto x_dims = GetXDim(ctx);
Q
Qiao Longfei 已提交
94 95
    auto label_dims = ctx->GetInputDim("Label");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
F
stash  
fengjiayi 已提交
96 97 98 99 100
    int rank = x_dims.size();
    PADDLE_ENFORCE_EQ(dy_dims.size(), rank,
                      "Input(Y@Grad) and Input(X) should have the same rank.");
    PADDLE_ENFORCE_EQ(label_dims.size(), rank,
                      "Input(Label) and Input(X) should have the same rank.");
S
sneaxiy 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

    bool check = true;
    if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
                                framework::product(label_dims) <= 0)) {
      check = false;
    }

    if (check) {
      PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                        framework::slice_ddim(label_dims, 0, rank - 1),
                        "The Input(X) and Input(Label) should have the same "
                        "shape except the last dimension.");
      PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                        framework::slice_ddim(dy_dims, 0, rank - 1),
                        "The Input(X) and Input(Y@Grad) should have the same "
                        "shape except the last dimension.");
    }
    if (IsSoftLabel(ctx)) {
      if (check) {
        PADDLE_ENFORCE_EQ(
            x_dims[rank - 1], label_dims[rank - 1],
            "When Attr(soft_label) == true, the last dimension of "
            "Input(X) and Input(Label) should be equal.");
      }
125
    } else {
F
stash  
fengjiayi 已提交
126 127
      PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
                        "When Attr(soft_label) == false, the last dimension of "
C
caoying03 已提交
128
                        "Input(Label) should be 1.");
129
    }
Q
Qiao Longfei 已提交
130
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
S
sneaxiy 已提交
131 132 133 134
    PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
                      "The last dimension of Input(Y@Grad) should be 1.");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD(VarNameWithXLoD(), framework::GradVarName("X"));
Y
Yan Chunwei 已提交
135
  }
Y
Yu Yang 已提交
136

137
 protected:
C
Cao Ying 已提交
138 139
  // Explicitly set that the data type of computation kernel of cross_entropy
  // is determined by its input "X".
140
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
141
      const framework::ExecutionContext& ctx) const override {
S
sneaxiy 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    return framework::OpKernelType(
        ctx.Input<Tensor>(framework::GradVarName("Y"))->type(),
        ctx.device_context());
  }

  virtual framework::DDim GetXDim(framework::InferShapeContext* ctx) const {
    return ctx->GetInputDim("X");
  }

  virtual const char* VarNameWithXLoD() const { return "X"; }

  virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
    return ctx->Attrs().Get<bool>("soft_label");
  }
};

class CrossEntropyOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Y"}};
Y
Yu Yang 已提交
164
  }
Y
Yan Chunwei 已提交
165 166
};

167
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
168
 public:
Y
Yu Yang 已提交
169
  void Make() override {
C
caoying03 已提交
170
    AddInput("X",
F
stash  
fengjiayi 已提交
171 172 173 174 175 176 177 178 179 180
             "(Tensor, default Tensor<float>), a tensor whose last dimension "
             "size is equal to the number of classes. This input is a "
             "probability computed by the previous operator, which is almost "
             "always the result of a softmax operator.");
    AddInput(
        "Label",
        "(Tensor), the tensor which represents the ground truth. It has the "
        "same shape with 'X' except the last dimension. When soft_label is set "
        "to false, the last dimension size is 1; when soft_label is set to "
        "true, the last dimension size is equal to the number of classes.");
C
caoying03 已提交
181
    AddOutput("Y",
F
stash  
fengjiayi 已提交
182 183 184
              "(Tensor, default Tensor<float>), a tensor whose shape is same "
              "with 'X' except that the last dimension size is 1. It "
              "represents the cross entropy loss.");
C
caoying03 已提交
185 186 187
    AddAttr<bool>("soft_label",
                  "(bool, default false), a flag indicating whether to "
                  "interpretate the given labels as soft labels.")
188
        .SetDefault(false);
189 190 191 192 193
    AddAttr<int>("ignore_index",
                 "(int, default -100), Specifies a target value that is"
                 "ignored and does not contribute to the input gradient."
                 "Only valid if soft_label is set to False")
        .SetDefault(-100);
Q
Qiao Longfei 已提交
194
    AddComment(R"DOC(
195
CrossEntropy Operator.
Q
Qiao Longfei 已提交
196

F
stash  
fengjiayi 已提交
197 198 199 200 201 202
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs. 
The matrix's second dimension(row length) is as same as the original last 
dimension, and the first dimension(column length) is the product of all other 
original dimensions. Then the softmax computation will take palce on each raw 
of flattened matrixs.

203 204 205
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
206
    soft_label = false, Label[i, 0] indicates the class index for sample i:
207

K
Kexin Zhao 已提交
208
                $Y[i] = -\log(X[i, Label[i]])$
Q
Qiao Longfei 已提交
209

210
2) Soft-label cross-entropy:
211
    soft_label = true, Label[i, j] indicates the soft label of class j
212
    for sample i:
213

K
Kexin Zhao 已提交
214
                $Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}$
215

216
   Please make sure that in this case the summuation of each row of Label
217 218 219 220 221 222
   equals one.

3) One-hot cross-entropy with vecterized Input(Label):
     As a special case of 2), when each row of Input(Label) has only one
     non-zero element (equals 1), soft-label cross-entropy degenerates to a
     one-hot cross-entropy with one-hot label representation.
D
dangqingqing 已提交
223

K
Kexin Zhao 已提交
224 225 226
Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.

Q
Qiao Longfei 已提交
227 228 229
)DOC");
  }
};
C
chengduo 已提交
230

S
sneaxiy 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
class CrossEntropyGradientOp : public CrossEntropyGradientOpBase {
 public:
  using CrossEntropyGradientOpBase::CrossEntropyGradientOpBase;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    CrossEntropyGradientOpBase::InferShape(ctx);
  }
};

class CrossEntropyOp2 : public CrossEntropyOpBase {
 public:
  using CrossEntropyOpBase::CrossEntropyOpBase;

  void InferShape(framework::InferShapeContext* ctx) const override {
    CrossEntropyOpBase::InferShape(ctx);

    PADDLE_ENFORCE(ctx->HasOutput("XShape"),
                   "Output(XShape) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("MatchX"),
                   "Output(MatchX) should be not null.");
    auto x_dims = ctx->GetInputDim("X");
    auto x_dims_vec = framework::vectorize(x_dims);
    x_dims_vec.push_back(0);
    ctx->SetOutputDim("XShape", framework::make_ddim(x_dims_vec));
    x_dims[x_dims.size() - 1] = 1;
    ctx->SetOutputDim("MatchX", x_dims);
    ctx->ShareLoD("X", /*->*/ "XShape");
  }

C
chengduo 已提交
262
 protected:
S
sneaxiy 已提交
263 264
  bool IsSoftLabel(framework::InferShapeContext* ctx) const override {
    return false;
C
chengduo 已提交
265 266
  }
};
S
sneaxiy 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

class CrossEntropyGradientOp2 : public CrossEntropyGradientOpBase {
 public:
  using CrossEntropyGradientOpBase::CrossEntropyGradientOpBase;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("MatchX"), "Input(MatchX) must exist");
    CrossEntropyGradientOpBase::InferShape(ctx);
  }

 protected:
  virtual framework::DDim GetXDim(framework::InferShapeContext* ctx) const {
    auto x_shape = ctx->GetInputDim("XShape");
    return framework::DDim(x_shape.Get(), x_shape.size() - 1);
  }

  virtual const char* VarNameWithXLoD() const { return "XShape"; }

  virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
    return false;
  }
};

class CrossEntropyOpMaker2 : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), a tensor whose last dimension "
             "size is equal to the number of classes. This input is a "
             "probability computed by the previous operator, which is almost "
             "always the result of a softmax operator.");
    AddInput(
        "Label",
        "(Tensor), the tensor which represents the ground truth. It has the "
        "same shape with 'X' except the last dimension. One hot Tensor.");
    AddOutput("Y",
              "(Tensor, default Tensor<float>), a tensor whose shape is same "
              "with 'X' except that the last dimension size is 1. It "
              "represents the cross entropy loss.");
    AddOutput("XShape", "Temporaily variable to save shape and LoD of X.");
    AddOutput("MatchX",
              "X value that matches label, used for gradient computation.");
    AddAttr<int>("ignore_index",
                 "(int, default -100), Specifies a target value that is"
                 "ignored and does not contribute to the input gradient."
                 "Only valid if soft_label is set to False")
        .SetDefault(-100);
    AddComment(R"DOC(
Hard-label CrossEntropy Operator.

The input 'X' and 'Label' will first be logically flattened to 2-D matrixs. 
The matrix's second dimension(row length) is as same as the original last 
dimension, and the first dimension(column length) is the product of all other 
original dimensions. Then the softmax computation will take palce on each raw 
of flattened matrixs.

Only support hard label.

Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.

)DOC");
  }
};

class CrossEntropyGradOpDescMaker2 : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("cross_entropy_grad2");
    op->SetInput("Label", Input("Label"));
    op->SetInput("MatchX", Output("MatchX"));
    op->SetInput("XShape", Output("XShape"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

Q
Qiao Longfei 已提交
349 350 351
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
352
namespace ops = paddle::operators;
353 354
using CPUCtx = paddle::platform::CPUDeviceContext;

S
sneaxiy 已提交
355 356
REGISTER_OPERATOR(cross_entropy, ops::CrossEntropyOpBase,
                  ops::CrossEntropyOpMaker, ops::CrossEntropyOpInferVarType,
357 358
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(cross_entropy_grad, ops::CrossEntropyGradientOp);
359 360
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<CPUCtx, float>,
                       ops::CrossEntropyOpKernel<CPUCtx, double>);
361
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
362 363
                       ops::CrossEntropyGradientOpKernel<CPUCtx, float>,
                       ops::CrossEntropyGradientOpKernel<CPUCtx, double>);
S
sneaxiy 已提交
364 365 366 367 368 369 370 371 372 373 374

REGISTER_OPERATOR(cross_entropy2, ops::CrossEntropyOp2,
                  ops::CrossEntropyOpMaker2, ops::CrossEntropyOpInferVarType,
                  ops::CrossEntropyGradOpDescMaker2);
REGISTER_OPERATOR(cross_entropy_grad2, ops::CrossEntropyGradientOp2);
REGISTER_OP_CPU_KERNEL(cross_entropy2,
                       ops::CrossEntropyOpKernel2<CPUCtx, float>,
                       ops::CrossEntropyOpKernel2<CPUCtx, double>);
REGISTER_OP_CPU_KERNEL(cross_entropy_grad2,
                       ops::CrossEntropyGradientOpKernel2<CPUCtx, float>,
                       ops::CrossEntropyGradientOpKernel2<CPUCtx, double>);