Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d8046da0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d8046da0
编写于
9月 19, 2017
作者:
X
Xinghai Sun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Use soft_label attribute for cross-entropy.
上级
8e7fe8ca
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
138 addition
and
86 deletion
+138
-86
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+70
-25
paddle/operators/cross_entropy_op.cu
paddle/operators/cross_entropy_op.cu
+6
-25
paddle/operators/cross_entropy_op.h
paddle/operators/cross_entropy_op.h
+7
-18
python/paddle/v2/framework/tests/test_cross_entropy_op.py
python/paddle/v2/framework/tests/test_cross_entropy_op.py
+55
-18
未找到文件。
paddle/operators/cross_entropy_op.cc
浏览文件 @
d8046da0
...
...
@@ -25,25 +25,32 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) of CrossEntropyOp must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Label) of CrossEntropyOp must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Y"
),
"Output(Y) of CrossEntropyOp must not be null."
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
PADDLE_ENFORCE_EQ
(
x
->
dims
().
size
(),
2
,
"X's rank must be 2."
);
PADDLE_ASSERT
(
label
->
dims
().
size
()
==
1
||
label
->
dims
().
size
()
==
2
);
if
(
label
->
dims
().
size
()
==
2
)
{
// soft cross entropy
PADDLE_ENFORCE_EQ
(
x
->
dims
(),
label
->
dims
());
"Input(Label) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Y"
),
"Output(Y) must not be null."
);
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
PADDLE_ENFORCE_EQ
(
x
->
dims
().
size
(),
2
,
"Input(X)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
label
->
dims
().
size
(),
2
,
"Input(Label)'s rank must be 2."
);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
0
||
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
);
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
0
],
label
->
dims
()[
0
],
"The 1st dimension of Input(X) and Input(Label) must "
"be equal."
);
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
1
],
label
->
dims
()[
1
],
"If Attr(soft_label) == 1, The 2nd dimension of "
"Input(X) and Input(Label) must be equal."
);
}
else
{
// normal cross entropy
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
0
],
label
->
dims
()[
0
]);
PADDLE_ENFORCE_EQ
(
label
->
dims
()[
1
],
1
,
"If Attr(soft_label) == 0, The 2nd dimension of "
"Input(Label) must be 1."
);
}
ctx
.
Output
<
LoDTensor
>
(
"Y"
)
->
Resize
({
x
->
dims
()[
0
],
1
});
}
};
...
...
@@ -54,12 +61,41 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) of CrossEntropyOp must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Label) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
)),
"Input(Y@GRAD) must not be null."
);
auto
dx
=
ctx
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_EQ
(
x
->
dims
().
size
(),
2
,
"Input(X)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
dy
->
dims
().
size
(),
2
,
"Input(Y@Grad)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
label
->
dims
().
size
(),
2
,
"Input(Label)'s rank must be 2."
);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
0
||
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
);
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
0
],
label
->
dims
()[
0
],
"The 1st dimension of Input(X) and Input(Label) must "
"be equal."
);
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
0
],
dy
->
dims
()[
0
],
"The 1st dimension of Input(X) and Input(Y@Grad) must "
"be equal."
);
PADDLE_ENFORCE_EQ
(
dy
->
dims
()[
1
],
1
,
"The 2nd dimension of Input(Y@Grad) must be 1."
);
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
1
],
label
->
dims
()[
1
],
"If Attr(soft_label) == 1, The 2nd dimension of "
"Input(X) and Input(Label) must be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
label
->
dims
()[
1
],
1
,
"If Attr(soft_label) == 0, The 2nd dimension of "
"Input(Label) must be 1."
);
}
auto
dx
=
ctx
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
dx
->
Resize
(
x
->
dims
());
}
};
...
...
@@ -72,22 +108,31 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The first input of CrossEntropyOp"
);
AddInput
(
"Label"
,
"The second input of CrossEntropyOp"
);
AddOutput
(
"Y"
,
"The output of CrossEntropyOp"
);
AddAttr
<
int
>
(
"soft_label"
,
"Is soft label. Default zero."
).
SetDefault
(
0
);
AddComment
(
R"DOC(
CrossEntropy Operator.
The second input (Label tensor) supports two kinds of shapes:
1) Rank(Label) = 1, Label[i] indicates the class index for sample i:
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
soft_label = 0, Label[i, 0] indicates the class index for sample i:
Y[i] = -log(X[i, Label[i]])
2) Rank(Label) = 2, Label[i, j] indicates the soft label of class j
for sample i:
2) Soft-label cross-entropy:
soft_label = 1, Label[i, j] indicates the soft label of class j
for sample i:
Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
Please make sure that in this case the summuation of each row of Label
equals one. If each row of Label has only one non-zero element (equals 1),
it degenerates to a standard one-hot representation.
equals one.
3) One-hot cross-entropy with vecterized Input(Label):
As a special case of 2), when each row of Input(Label) has only one
non-zero element (equals 1), soft-label cross-entropy degenerates to a
one-hot cross-entropy with one-hot label representation.
)DOC"
);
}
};
...
...
paddle/operators/cross_entropy_op.cu
浏览文件 @
d8046da0
...
...
@@ -13,27 +13,13 @@
limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/operators/cross_entropy_op.h"
#include "paddle/platform/assert.h"
#include "paddle/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
HOSTDEVICE
T
tolerable_value
(
const
T
x
)
{
PADDLE_ASSERT
(
std
::
is_floating_point
<
T
>::
value
);
const
T
kApproInf
=
1e20
;
if
(
x
==
INFINITY
)
{
return
kApproInf
;
}
if
(
x
==
-
INFINITY
)
{
return
-
kApproInf
;
}
return
x
;
}
template
<
typename
T
>
__global__
void
CrossEntropyKernel
(
T
*
Y
,
const
T
*
X
,
const
int
*
label
,
const
int
N
,
const
int
D
)
{
...
...
@@ -53,9 +39,9 @@ __global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
sum
=
static_cast
<
T
>
(
0
);
for
(
int
j
=
0
;
j
<
D
;
j
++
)
{
sum
+=
label
[
i
*
D
+
j
]
*
log
(
X
[
i
*
D
+
j
]
);
sum
+=
label
[
i
*
D
+
j
]
*
tolerable_value
(
log
(
X
[
i
*
D
+
j
])
);
}
Y
[
i
]
=
-
tolerable_value
(
sum
)
;
Y
[
i
]
=
-
sum
;
}
}
...
...
@@ -85,6 +71,7 @@ template <typename T>
__global__
void
SoftCrossEntropyGradientKernel
(
T
*
dX
,
const
T
*
dY
,
const
T
*
X
,
const
T
*
label
,
const
int
N
,
const
int
D
)
{
// TOOD(qingqing): optimize for this kernel
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
for
(
int
j
=
0
;
j
<
D
;
++
j
)
{
...
...
@@ -115,14 +102,11 @@ class CrossEntropyOpCUDAKernel : public framework::OpKernel {
int
grid
=
(
n
+
block
-
1
)
/
block
;
// TODO(qingqing) launch kernel on specified stream
// base on ExecutionContext.
int
label_rank
=
label
->
dims
().
size
();
if
(
label_rank
==
2
)
{
// soft cross entropy
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
SoftCrossEntropyKernel
<
T
><<<
grid
,
block
>>>
(
y_data
,
x_data
,
label_data
,
n
,
d
);
}
else
{
// normal cross entropy
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
CrossEntropyKernel
<
T
><<<
grid
,
block
>>>
(
y_data
,
x_data
,
label_data
,
n
,
d
);
}
...
...
@@ -153,14 +137,11 @@ class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
grid
=
(
n
+
block
-
1
)
/
block
;
// TODO(qingqing): launch kernel on specified stream
// base on ExecutionContext.
int
label_rank
=
label
->
dims
().
size
();
if
(
label_rank
==
2
)
{
// soft cross entropy
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
auto
*
label_data
=
label
->
data
<
T
>
();
SoftCrossEntropyGradientKernel
<
T
><<<
grid
,
block
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
n
,
d
);
}
else
{
// normal cross entropy
auto
*
label_data
=
label
->
data
<
int
>
();
CrossEntropyGradientKernel
<
T
><<<
grid
,
block
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
n
,
d
);
...
...
paddle/operators/cross_entropy_op.h
浏览文件 @
d8046da0
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -21,21 +22,15 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
inline
T
tolerable_value
(
const
T
x
)
{
static_assert
(
std
::
is_floating_point
<
T
>::
value
,
"tolerable_value works only on float, "
"double and double double."
);
HOSTDEVICE
T
tolerable_value
(
const
T
x
)
{
PADDLE_ASSERT
(
std
::
is_floating_point
<
T
>::
value
);
const
T
kApproInf
=
1e20
;
if
(
x
==
INFINITY
)
{
return
kApproInf
;
}
if
(
x
==
-
INFINITY
)
{
return
-
kApproInf
;
}
return
x
;
}
...
...
@@ -55,22 +50,19 @@ class CrossEntropyOpKernel : public framework::OpKernel {
int
batch_size
=
x
->
dims
()[
0
];
int
class_num
=
x
->
dims
()[
1
];
int
label_rank
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
dims
().
size
();
if
(
label_rank
==
2
)
{
// soft cross entropy
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
int
index
=
0
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
T
sum
=
static_cast
<
T
>
(
0
);
for
(
int
j
=
0
;
j
<
class_num
;
++
j
)
{
sum
+=
label_data
[
index
]
*
std
::
log
(
x_data
[
index
]
);
y_data
[
i
]
=
-
tolerable_value
(
sum
)
;
sum
+=
label_data
[
index
]
*
tolerable_value
(
std
::
log
(
x_data
[
index
])
);
y_data
[
i
]
=
-
sum
;
index
++
;
}
}
}
else
{
// normal cross entropy
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
index
=
i
*
class_num
+
label_data
[
i
];
...
...
@@ -98,11 +90,9 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel {
int
batch_size
=
x
->
dims
()[
0
];
int
class_num
=
x
->
dims
()[
1
];
int
label_rank
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
dims
().
size
();
// TODO(qingqing): make zero setting an common function.
if
(
label_rank
==
2
)
{
// soft cross entropy
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
int
index
=
0
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
...
...
@@ -112,7 +102,6 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel {
}
}
}
else
{
// normal cross entropy
auto
*
label_data
=
label
->
data
<
int
>
();
memset
(
dx_data
,
0
,
sizeof
(
T
)
*
batch_size
*
class_num
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
...
...
python/paddle/v2/framework/tests/test_cross_entropy_op.py
浏览文件 @
d8046da0
import
unittest
import
numpy
import
numpy
as
np
from
op_test
import
OpTest
class
TestOnehotCrossEntropyOp
(
OpTest
):
class
TestCrossEntropyOp1
(
OpTest
):
"""Test standard cross-entropy, with index representation of labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
30
class_num
=
10
X
=
numpy
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
labels
=
numpy
.
random
.
randint
(
0
,
class_num
,
batch_size
,
dtype
=
"int32"
)
cross_entropy
=
numpy
.
asmatrix
(
[[
-
numpy
.
log
(
X
[
i
][
labels
[
i
]])]
for
i
in
range
(
X
.
shape
[
0
])],
X
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label
=
np
.
random
.
randint
(
0
,
class_num
,
(
batch_size
,
1
),
dtype
=
"int32"
)
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
X
[
i
][
label
[
i
][
0
]])]
for
i
in
range
(
X
.
shape
[
0
])],
dtype
=
"float32"
)
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
s
}
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
'soft_label'
:
0
}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -26,20 +28,55 @@ class TestOnehotCrossEntropyOp(OpTest):
self
.
check_grad
([
"X"
],
"Y"
)
class
TestCrossEntropySoftLabel
(
OpTest
):
class
TestCrossEntropyOp2
(
OpTest
):
"""Test soft-label cross-entropy, with vecterized soft labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
3
0
class_num
=
10
X
=
n
umpy
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label
=
n
umpy
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
batch_size
=
1
0
class_num
=
5
X
=
n
p
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label
=
n
p
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label
/=
label
.
sum
(
axis
=
1
,
keepdims
=
True
)
cross_entropy
=
(
-
label
*
np
.
log
(
X
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
X
,
'Label'
:
label
}
cross_entropy
=
(
-
label
*
numpy
.
log
(
X
)).
sum
(
self
.
outputs
=
{
'Y'
:
cross_entropy
}
self
.
attrs
=
{
'soft_label'
:
1
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
)
class
TestCrossEntropyOp3
(
OpTest
):
"""Test one-hot cross-entropy, with vecterized one-hot representation of
labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
30
class_num
=
10
X
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label_index
=
np
.
random
.
randint
(
0
,
class_num
,
(
batch_size
),
dtype
=
"int32"
)
label
=
np
.
zeros
(
X
.
shape
)
label
[
np
.
arange
(
batch_size
),
label_index
]
=
1
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
X
[
i
][
label_index
[
i
]])]
for
i
in
range
(
X
.
shape
[
0
])],
dtype
=
"float32"
)
cross_entropy2
=
(
-
label
*
np
.
log
(
X
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
X
,
'Label'
:
label
}
self
.
outputs
=
{
'Y'
:
cross_entropy
}
self
.
attrs
=
{
'soft_label'
:
1
}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录