cascade_rcnn.py 5.8 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

15 16 17 18
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
wangguanzhong 已提交
19
import paddle
20 21 22 23 24 25 26 27 28
from ppdet.core.workspace import register
from .meta_arch import BaseArch

__all__ = ['CascadeRCNN']


@register
class CascadeRCNN(BaseArch):
    __category__ = 'architecture'
W
wangguanzhong 已提交
29
    __shared__ = ['roi_stages']
30 31 32 33 34
    __inject__ = [
        'anchor',
        'proposal',
        'mask',
        'backbone',
W
wangguanzhong 已提交
35
        'neck',
36 37 38
        'rpn_head',
        'bbox_head',
        'mask_head',
W
wangguanzhong 已提交
39 40
        'bbox_post_process',
        'mask_post_process',
41 42 43 44 45 46 47 48
    ]

    def __init__(self,
                 anchor,
                 proposal,
                 backbone,
                 rpn_head,
                 bbox_head,
W
wangguanzhong 已提交
49 50 51 52 53 54 55
                 bbox_post_process,
                 neck=None,
                 mask=None,
                 mask_head=None,
                 mask_post_process=None,
                 roi_stages=3):
        super(CascadeRCNN, self).__init__()
56 57 58 59 60
        self.anchor = anchor
        self.proposal = proposal
        self.backbone = backbone
        self.rpn_head = rpn_head
        self.bbox_head = bbox_head
W
wangguanzhong 已提交
61 62 63
        self.bbox_post_process = bbox_post_process
        self.neck = neck
        self.mask = mask
64
        self.mask_head = mask_head
W
wangguanzhong 已提交
65 66 67
        self.mask_post_process = mask_post_process
        self.roi_stages = roi_stages
        self.with_mask = mask is not None
68 69 70

    def model_arch(self, ):
        # Backbone
W
wangguanzhong 已提交
71 72 73 74 75
        body_feats = self.backbone(self.inputs)

        # Neck
        if self.neck is not None:
            body_feats, spatial_scale = self.neck(body_feats)
76 77

        # RPN
W
wangguanzhong 已提交
78 79 80 81 82
        # rpn_head returns two list: rpn_feat, rpn_head_out 
        # each element in rpn_feats contains rpn feature on each level,
        # and the length is 1 when the neck is not applied.
        # each element in rpn_head_out contains (rpn_rois_score, rpn_rois_delta)
        rpn_feat, self.rpn_head_out = self.rpn_head(self.inputs, body_feats)
83 84

        # Anchor
W
wangguanzhong 已提交
85 86 87 88 89 90 91 92 93 94 95 96
        # anchor_out returns a list,
        # each element contains (anchor, anchor_var)
        self.anchor_out = self.anchor(rpn_feat)

        # Proposal RoI
        # compute targets here when training
        rois = None
        bbox_head_out = None
        max_overlap = None
        self.bbox_head_list = []
        rois_list = []
        for i in range(self.roi_stages):
97
            # Proposal BBox
W
wangguanzhong 已提交
98 99 100 101 102 103 104 105 106 107
            rois = self.proposal(
                self.inputs,
                self.rpn_head_out,
                self.anchor_out,
                i,
                rois,
                bbox_head_out,
                max_overlap=max_overlap)
            rois_list.append(rois)
            max_overlap = self.proposal.get_max_overlap()
108
            # BBox Head
W
wangguanzhong 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            bbox_feat, bbox_head_out, _ = self.bbox_head(body_feats, rois,
                                                         spatial_scale, i)
            self.bbox_head_list.append(bbox_head_out)

        if self.inputs['mode'] == 'infer':
            bbox_pred, bboxes = self.bbox_head.get_cascade_prediction(
                self.bbox_head_list, rois_list)
            self.bboxes = self.bbox_post_process(
                bbox_pred,
                bboxes,
                self.inputs['im_shape'],
                self.inputs['scale_factor'],
                var_weight=3.)

        if self.with_mask:
            rois = rois_list[-1]
            rois_has_mask_int32 = None
            if self.inputs['mode'] == 'train':
                bbox_targets = self.proposal.get_targets()[-1]
                self.bboxes, rois_has_mask_int32 = self.mask(self.inputs, rois,
                                                             bbox_targets)
            # Mask Head 
            self.mask_head_out = self.mask_head(
                self.inputs, body_feats, self.bboxes, bbox_feat,
                rois_has_mask_int32, spatial_scale)
134

K
Kaipeng Deng 已提交
135
    def get_loss(self, ):
W
wangguanzhong 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        loss = {}

        # RPN loss
        rpn_loss_inputs = self.anchor.generate_loss_inputs(
            self.inputs, self.rpn_head_out, self.anchor_out)
        loss_rpn = self.rpn_head.get_loss(rpn_loss_inputs)
        loss.update(loss_rpn)

        # BBox loss
        bbox_targets_list = self.proposal.get_targets()
        loss_bbox = self.bbox_head.get_loss(self.bbox_head_list,
                                            bbox_targets_list)
        loss.update(loss_bbox)

        if self.with_mask:
            # Mask loss
            mask_targets = self.mask.get_targets()
            loss_mask = self.mask_head.get_loss(self.mask_head_out,
                                                mask_targets)
            loss.update(loss_mask)

        total_loss = paddle.add_n(list(loss.values()))
        loss.update({'loss': total_loss})
        return loss

    def get_pred(self, return_numpy=True):
        bbox, bbox_num = self.bboxes
        output = {
            'bbox': bbox.numpy(),
            'bbox_num': bbox_num.numpy(),
            'im_id': self.inputs['im_id'].numpy(),
167
        }
W
wangguanzhong 已提交
168 169 170 171 172 173 174

        if self.with_mask:
            mask = self.mask_post_process(self.bboxes, self.mask_head_out,
                                          self.inputs['im_shape'],
                                          self.inputs['scale_factor'])
            output.update(mask)
        return output