# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from ppdet.core.workspace import register from .meta_arch import BaseArch __all__ = ['CascadeRCNN'] @register class CascadeRCNN(BaseArch): __category__ = 'architecture' __shared__ = ['roi_stages'] __inject__ = [ 'anchor', 'proposal', 'mask', 'backbone', 'neck', 'rpn_head', 'bbox_head', 'mask_head', 'bbox_post_process', 'mask_post_process', ] def __init__(self, anchor, proposal, backbone, rpn_head, bbox_head, bbox_post_process, neck=None, mask=None, mask_head=None, mask_post_process=None, roi_stages=3): super(CascadeRCNN, self).__init__() self.anchor = anchor self.proposal = proposal self.backbone = backbone self.rpn_head = rpn_head self.bbox_head = bbox_head self.bbox_post_process = bbox_post_process self.neck = neck self.mask = mask self.mask_head = mask_head self.mask_post_process = mask_post_process self.roi_stages = roi_stages self.with_mask = mask is not None def model_arch(self, ): # Backbone body_feats = self.backbone(self.inputs) # Neck if self.neck is not None: body_feats, spatial_scale = self.neck(body_feats) # RPN # rpn_head returns two list: rpn_feat, rpn_head_out # each element in rpn_feats contains rpn feature on each level, # and the length is 1 when the neck is not applied. # each element in rpn_head_out contains (rpn_rois_score, rpn_rois_delta) rpn_feat, self.rpn_head_out = self.rpn_head(self.inputs, body_feats) # Anchor # anchor_out returns a list, # each element contains (anchor, anchor_var) self.anchor_out = self.anchor(rpn_feat) # Proposal RoI # compute targets here when training rois = None bbox_head_out = None max_overlap = None self.bbox_head_list = [] rois_list = [] for i in range(self.roi_stages): # Proposal BBox rois = self.proposal( self.inputs, self.rpn_head_out, self.anchor_out, i, rois, bbox_head_out, max_overlap=max_overlap) rois_list.append(rois) max_overlap = self.proposal.get_max_overlap() # BBox Head bbox_feat, bbox_head_out, _ = self.bbox_head(body_feats, rois, spatial_scale, i) self.bbox_head_list.append(bbox_head_out) if self.inputs['mode'] == 'infer': bbox_pred, bboxes = self.bbox_head.get_cascade_prediction( self.bbox_head_list, rois_list) self.bboxes = self.bbox_post_process( bbox_pred, bboxes, self.inputs['im_shape'], self.inputs['scale_factor'], var_weight=3.) if self.with_mask: rois = rois_list[-1] rois_has_mask_int32 = None if self.inputs['mode'] == 'train': bbox_targets = self.proposal.get_targets()[-1] self.bboxes, rois_has_mask_int32 = self.mask(self.inputs, rois, bbox_targets) # Mask Head self.mask_head_out = self.mask_head( self.inputs, body_feats, self.bboxes, bbox_feat, rois_has_mask_int32, spatial_scale) def get_loss(self, ): loss = {} # RPN loss rpn_loss_inputs = self.anchor.generate_loss_inputs( self.inputs, self.rpn_head_out, self.anchor_out) loss_rpn = self.rpn_head.get_loss(rpn_loss_inputs) loss.update(loss_rpn) # BBox loss bbox_targets_list = self.proposal.get_targets() loss_bbox = self.bbox_head.get_loss(self.bbox_head_list, bbox_targets_list) loss.update(loss_bbox) if self.with_mask: # Mask loss mask_targets = self.mask.get_targets() loss_mask = self.mask_head.get_loss(self.mask_head_out, mask_targets) loss.update(loss_mask) total_loss = paddle.add_n(list(loss.values())) loss.update({'loss': total_loss}) return loss def get_pred(self, return_numpy=True): bbox, bbox_num = self.bboxes output = { 'bbox': bbox.numpy(), 'bbox_num': bbox_num.numpy(), 'im_id': self.inputs['im_id'].numpy(), } if self.with_mask: mask = self.mask_post_process(self.bboxes, self.mask_head_out, self.inputs['im_shape'], self.inputs['scale_factor']) output.update(mask) return output