mask_rcnn_r50.yml 2.2 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
architecture: MaskRCNN
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
weights: output/mask_rcnn_r50_fpn_1x/model_final
load_static_weights: True

# Model Achitecture
MaskRCNN:
  # model anchor info flow
  anchor: Anchor
  proposal: Proposal
  mask: Mask
  # model feat info flow
  backbone: ResNet
  rpn_head: RPNHead
  bbox_head: BBoxHead
  mask_head: MaskHead
  # post process
  bbox_post_process: BBoxPostProcess
  mask_post_process: MaskPostProcess

ResNet:
  # index 0 stands for res2
  depth: 50
  norm_type: bn
  freeze_at: 0
  return_idx: [2]
  num_stages: 3

RPNHead:
  rpn_feat:
    name: RPNFeat
    feat_in: 1024
    feat_out: 1024
  anchor_per_position: 15

Anchor:
  anchor_generator:
    name: AnchorGeneratorRPN
    anchor_sizes: [32, 64, 128, 256, 512]
    aspect_ratios: [0.5, 1.0, 2.0]
    stride: [16.0, 16.0]
    variance: [1.0, 1.0, 1.0, 1.0]
  anchor_target_generator:
    name: AnchorTargetGeneratorRPN
    batch_size_per_im: 256
    fg_fraction: 0.5
    negative_overlap: 0.3
    positive_overlap: 0.7
    straddle_thresh: 0.0

Proposal:
  proposal_generator:
    name: ProposalGenerator
    min_size: 0.0
    nms_thresh: 0.7
    train_pre_nms_top_n: 12000
    train_post_nms_top_n: 2000
    infer_pre_nms_top_n: 6000
    infer_post_nms_top_n: 1000
  proposal_target_generator:
    name: ProposalTargetGenerator
    batch_size_per_im: 512
W
wangguanzhong 已提交
63
    bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
G
Guanghua Yu 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    bg_thresh_hi: [0.5,]
    bg_thresh_lo: [0.0,]
    fg_thresh: [0.5,]
    fg_fraction: 0.25

BBoxHead:
  bbox_feat:
    name: BBoxFeat
    roi_extractor: RoIAlign
    head_feat:
      name: Res5Head
      feat_in: 1024
      feat_out: 512
  with_pool: true
  in_feat: 2048

BBoxPostProcess:
  decode:
    name: RCNNBox
    num_classes: 81
    batch_size: 1
  nms:
    name: MultiClassNMS
    keep_top_k: 100
    score_threshold: 0.05
    nms_threshold: 0.5

Mask:
  mask_target_generator:
    name: MaskTargetGenerator
    mask_resolution: 14

RoIAlign:
  resolution: 14
  sampling_ratio: 0
  start_level: 0
  end_level: 0

MaskHead:
  mask_feat:
    name: MaskFeat
    num_convs: 0
    feat_in: 2048
    feat_out: 256
    mask_roi_extractor: RoIAlign
    share_bbox_feat: true
  feat_in: 256


MaskPostProcess:
  mask_resolution: 14