architecture: MaskRCNN pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar weights: output/mask_rcnn_r50_fpn_1x/model_final load_static_weights: True # Model Achitecture MaskRCNN: # model anchor info flow anchor: Anchor proposal: Proposal mask: Mask # model feat info flow backbone: ResNet rpn_head: RPNHead bbox_head: BBoxHead mask_head: MaskHead # post process bbox_post_process: BBoxPostProcess mask_post_process: MaskPostProcess ResNet: # index 0 stands for res2 depth: 50 norm_type: bn freeze_at: 0 return_idx: [2] num_stages: 3 RPNHead: rpn_feat: name: RPNFeat feat_in: 1024 feat_out: 1024 anchor_per_position: 15 Anchor: anchor_generator: name: AnchorGeneratorRPN anchor_sizes: [32, 64, 128, 256, 512] aspect_ratios: [0.5, 1.0, 2.0] stride: [16.0, 16.0] variance: [1.0, 1.0, 1.0, 1.0] anchor_target_generator: name: AnchorTargetGeneratorRPN batch_size_per_im: 256 fg_fraction: 0.5 negative_overlap: 0.3 positive_overlap: 0.7 straddle_thresh: 0.0 Proposal: proposal_generator: name: ProposalGenerator min_size: 0.0 nms_thresh: 0.7 train_pre_nms_top_n: 12000 train_post_nms_top_n: 2000 infer_pre_nms_top_n: 6000 infer_post_nms_top_n: 1000 proposal_target_generator: name: ProposalTargetGenerator batch_size_per_im: 512 bbox_reg_weights: [0.1, 0.1, 0.2, 0.2] bg_thresh_hi: [0.5,] bg_thresh_lo: [0.0,] fg_thresh: [0.5,] fg_fraction: 0.25 BBoxHead: bbox_feat: name: BBoxFeat roi_extractor: RoIAlign head_feat: name: Res5Head feat_in: 1024 feat_out: 512 with_pool: true in_feat: 2048 BBoxPostProcess: decode: name: RCNNBox num_classes: 81 batch_size: 1 nms: name: MultiClassNMS keep_top_k: 100 score_threshold: 0.05 nms_threshold: 0.5 Mask: mask_target_generator: name: MaskTargetGenerator mask_resolution: 14 RoIAlign: resolution: 14 sampling_ratio: 0 start_level: 0 end_level: 0 MaskHead: mask_feat: name: MaskFeat num_convs: 0 feat_in: 2048 feat_out: 256 mask_roi_extractor: RoIAlign share_bbox_feat: true feat_in: 256 MaskPostProcess: mask_resolution: 14