test_profiler.py 4.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
18
import os
19
import numpy as np
20 21 22 23
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.layers as layers
import paddle.fluid.core as core
D
dangqingqing 已提交
24 25


26
class TestProfiler(unittest.TestCase):
X
Xin Pan 已提交
27
    def net_profiler(self, state, profile_path='/tmp/profile'):
28 29
        enable_if_gpu = state == 'GPU' or state == "All"
        if enable_if_gpu and not core.is_compiled_with_cuda():
30 31 32 33 34 35
            return
        startup_program = fluid.Program()
        main_program = fluid.Program()

        with fluid.program_guard(main_program, startup_program):
            image = fluid.layers.data(name='x', shape=[784], dtype='float32')
X
Xin Pan 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
            hidden1 = fluid.layers.fc(input=image, size=64, act='relu')
            i = layers.zeros(shape=[1], dtype='int64')
            counter = fluid.layers.zeros(
                shape=[1], dtype='int64', force_cpu=True)
            until = layers.fill_constant([1], dtype='int64', value=10)
            data_arr = layers.array_write(hidden1, i)
            cond = fluid.layers.less_than(x=counter, y=until)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                hidden_n = fluid.layers.fc(input=hidden1, size=64, act='relu')
                layers.array_write(hidden_n, i, data_arr)
                fluid.layers.increment(x=counter, value=1, in_place=True)
                layers.less_than(x=counter, y=until, cond=cond)

            hidden_n = layers.array_read(data_arr, i)
            hidden2 = fluid.layers.fc(input=hidden_n, size=64, act='relu')
52 53 54
            predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
            label = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
55
            avg_cost = fluid.layers.mean(cost)
F
fengjiayi 已提交
56 57 58
            batch_size = fluid.layers.create_tensor(dtype='int64')
            batch_acc = fluid.layers.accuracy(
                input=predict, label=label, total=batch_size)
59

60
        optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
61 62 63 64 65
        opts = optimizer.minimize(avg_cost, startup_program=startup_program)

        place = fluid.CPUPlace() if state == 'CPU' else fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        exe.run(startup_program)
66

F
fengjiayi 已提交
67
        pass_acc_calculator = fluid.average.WeightedAverage()
F
fengjiayi 已提交
68
        with profiler.profiler(state, 'total', profile_path) as prof:
69 70 71 72 73
            for iter in range(10):
                if iter == 2:
                    profiler.reset_profiler()
                x = np.random.random((32, 784)).astype("float32")
                y = np.random.randint(0, 10, (32, 1)).astype("int64")
74

75 76 77
                outs = exe.run(main_program,
                               feed={'x': x,
                                     'y': y},
F
fengjiayi 已提交
78
                               fetch_list=[avg_cost, batch_acc, batch_size])
79
                acc = np.array(outs[1])
F
fengjiayi 已提交
80 81 82
                b_size = np.array(outs[2])
                pass_acc_calculator.add(value=acc, weight=b_size)
                pass_acc = pass_acc_calculator.eval()
83

84 85
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
D
dangqingqing 已提交
86 87
    def test_cpu_profiler(self):
        self.net_profiler('CPU')
88

89 90
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
D
dangqingqing 已提交
91 92
    def test_cuda_profiler(self):
        self.net_profiler('GPU')
93

94 95
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
96
    def test_all_profiler(self):
X
Xin Pan 已提交
97
        self.net_profiler('All', '/tmp/profile_out')
98
        with open('/tmp/profile_out', 'rb') as f:
X
Xin Pan 已提交
99
            self.assertGreater(len(f.read()), 0)
100

D
dangqingqing 已提交
101

102 103
if __name__ == '__main__':
    unittest.main()