context_project.h 12.6 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/operators/math/im2col.h"

namespace paddle {
namespace operators {
namespace math {

C
chengduoZH 已提交
25 26
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
C
chengduoZH 已提交
27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
C
chengduoZH 已提交
30

C
chengduoZH 已提交
31
/*
C
chengduoZH 已提交
32
 * \brief Context projection concatenates features in adjacent time-steps in
C
chengduoZH 已提交
33 34 35
 * a sequence. The i-th row of the output is the concatenation of
 * context_length rows of the input. The context_length rows are the
 * consecutive rows from the i+shift_start row.
C
sss  
chengduoZH 已提交
36
 * ContextProjectGradFunctor is the inverse process of ContextProjectFunctor.
C
chengduoZH 已提交
37
 *
C
chengduoZH 已提交
38
 * \param in            Input data.
C
chengduoZH 已提交
39 40
 * \param Shape         The shape of Input data:
 *                        [mini-batch, input_hidden_size].
C
chengduoZH 已提交
41
 *
C
chengduoZH 已提交
42
 * \param padding_data  Padding data.
C
chengduoZH 已提交
43 44
 * \param Shape         The shape of Padding data:
 *                        [up_pad + down_pad, input_hidden_size].
C
chengduoZH 已提交
45
 *
C
chengduoZH 已提交
46
 * \param col           Col data.
C
chengduoZH 已提交
47 48
 * \param Shape         The shape of Col data:
 *                        [mini-batch, context_length * input_hidden_size].
C
chengduoZH 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 *
 * For a mini-batch of 2 variable lengths sentences, containing 3, and 1
 * time-steps:
 *
 * Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3,
 * 4].
 * Besides, for the sake of simplicity, we assume M=1 and N=2.
 *
 * X = [[a1, a2;
 *       b1, b2;
 *       c1, c2]
 *      [d1, d2]]
 *
 * This is to say that input (X) has 4 words and the dimension of each word
 * representation is 2.
 *
 * - Case1:
C
chengduoZH 已提交
66 67 68
 *   If context_start is -1 and padding_trainable is false, we use zero to pad
 *   instead of learned weight to pad,
 *   and the context_length is 3, the output (Out) is:
C
chengduoZH 已提交
69
 *
C
chengduoZH 已提交
70 71 72 73
 *   Out =[[0,  0,  a1, a2, b1, b2;
 *          a1, a2, b1, b2, c1, c2;
 *          b1, b2, c1, c2, 0,  0 ]
 *          [0,  0, d1, d2, 0,  0 ]]
C
chengduoZH 已提交
74 75
 *
 * - Case2:
C
chengduoZH 已提交
76 77 78
 *   If context_start is -1 and padding_trainable is true, we use learned weight
 *   to pad,
 *   and the context_length is 3, the output (Out) is:
C
chengduoZH 已提交
79
 *
C
chengduoZH 已提交
80 81 82 83
 *   Out = [[w1, w2, a1, a2, b1, b2;
 *           a1, a2, b1, b2, c1, c2;
 *           b1, b2, c1, c2, w3, w4]
 *          [w1, w2, d1, d2, w3, w4]]
C
chengduoZH 已提交
84 85 86 87
 *
 */

template <typename Place, typename T>
C
chengduoZH 已提交
88
class ContextProjectFunctor {
C
chengduoZH 已提交
89
 public:
C
chengduoZH 已提交
90 91
  void operator()(const platform::DeviceContext& context, const LoDTensor& in,
                  const Tensor& padding_data, Tensor& col,
C
sss  
chengduoZH 已提交
92 93
                  bool padding_trainable, int context_start, int context_length,
                  int context_stride, int up_pad, int down_pad) {
C
chengduoZH 已提交
94
    auto lod_level_0 = in.lod()[0];
C
chengduoZH 已提交
95

C
chengduoZH 已提交
96
    math::Im2ColFunctor<math::ColFormat::kOCF, Place, float> im2col_ocf;
C
sss  
chengduoZH 已提交
97

C
chengduoZH 已提交
98 99 100
    int dilation_h = 1;
    int dilation_w = 1;

C
sss  
chengduoZH 已提交
101 102 103 104 105 106 107 108 109 110
    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
    sequence_width = in.dims()[1];

    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
      input_row_begin = (context_start > 0)
                            ? static_cast<int>(lod_level_0[i]) + context_start
                            : static_cast<int>(lod_level_0[i]);
      input_row_end = static_cast<int>(lod_level_0[i + 1]);

C
chengduoZH 已提交
111 112
      Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
                               static_cast<int>(lod_level_0[i + 1]));
C
sss  
chengduoZH 已提交
113 114 115 116

      sequence_height = static_cast<int>(out_t.dims()[0]);

      if (input_row_begin < input_row_end) {
C
chengduoZH 已提交
117
        Tensor in_t = in.Slice(input_row_begin, input_row_end);
C
sss  
chengduoZH 已提交
118 119 120 121 122 123 124 125 126 127 128 129

        std::vector<int64_t> output_shape(
            {sequence_height, 1, 1, context_length,
             sequence_width});  // output_height, output_width,
        // input_channels, filter_height, filter_width
        out_t.Resize(framework::make_ddim(output_shape));

        std::vector<int64_t> input_shape(
            {1, input_row_end - input_row_begin,
             sequence_width});  // input_channels, input_height, input_width
        in_t.Resize(framework::make_ddim(input_shape));

C
chengduoZH 已提交
130
        im2col_ocf(context, in_t, out_t, dilation_h, dilation_w,
C
sss  
chengduoZH 已提交
131 132 133 134 135 136 137
                   /*stride_height*/ context_stride, /*stride_width*/ 1, up_pad,
                   down_pad, 0, 0);
        out_t.Resize({sequence_height, context_length * sequence_width});
      }
    }
    if (padding_trainable) {
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
C
chengduoZH 已提交
138 139
        Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
                                 static_cast<int>(lod_level_0[i + 1]));
C
sss  
chengduoZH 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152

        sequence_height = static_cast<int>(out_t.dims()[0]);

        // add up trainable data
        out_t.Resize({sequence_height * context_length, sequence_width});

        if (up_pad > 0) {  // add up pad
          int padding_rows = std::min(
              up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

          for (int k = 0; k < padding_rows; ++k) {
            int padding_size =
                k + context_length < up_pad ? context_length : up_pad - k;
C
chengduoZH 已提交
153 154 155
            Tensor out_t_sub = out_t.Slice(k * context_length,
                                           k * context_length + padding_size);
            Tensor w_sub = padding_data.Slice(k, k + padding_size);
C
sss  
chengduoZH 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
          }
        }
        if (down_pad > 0) {  // add down pad
          int down_pad_begin_row =
              std::max(0,
                       (sequence_height - context_start - context_length) + 1) +
              1;
          int padding_begin = std::max(0, context_start - sequence_height);
          int padding_size =
              sequence_height - context_start >= context_length
                  ? 1
                  : context_length - (sequence_height - context_start);
          if (context_start >= sequence_height) padding_size = context_length;
          int padding_idx = padding_begin;
          for (int t = 0; t + down_pad_begin_row <= sequence_height;
               ++t, ++padding_size) {
            if (context_start >= sequence_height) padding_size = context_length;
            if (padding_size > context_length) {
              padding_size = context_length;
              padding_idx++;
            }
            if (padding_begin > 0 || sequence_height == context_start)
              padding_idx = padding_begin + t;
C
chengduoZH 已提交
182 183

            Tensor out_t_sub = out_t.Slice(
C
sss  
chengduoZH 已提交
184 185
                (down_pad_begin_row + t) * context_length - padding_size,
                (down_pad_begin_row + t) * context_length);
C
chengduoZH 已提交
186
            Tensor w_sub = padding_data.Slice(
C
sss  
chengduoZH 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
                up_pad + padding_idx, up_pad + padding_idx + padding_size);
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
          }
        }
        out_t.Resize({sequence_height, context_length * sequence_width});
      }
    }
  }
};

template <typename Place, typename T>
class ContextProjectGradFunctor {
 public:
C
chengduoZH 已提交
202 203
  void operator()(const platform::DeviceContext& context, LoDTensor& in,
                  Tensor& padding_data, Tensor& col, bool padding_trainable,
C
sss  
chengduoZH 已提交
204 205 206 207
                  int context_start, int context_length, int context_stride,
                  int up_pad, int down_pad, bool input_grad, bool pad_grad) {
    auto lod_level_0 = in.lod()[0];

C
chengduoZH 已提交
208
    math::Col2ImFunctor<math::ColFormat::kOCF, Place, float> col2im_ocf;
C
chengduoZH 已提交
209

C
chengduoZH 已提交
210 211 212
    int dilation_h = 1;
    int dilation_w = 1;

C
chengduoZH 已提交
213 214
    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
C
chengduoZH 已提交
215 216
    sequence_width = in.dims()[1];

C
sss  
chengduoZH 已提交
217
    if (input_grad) {
C
chengduoZH 已提交
218 219 220 221 222 223
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
        input_row_begin = (context_start > 0)
                              ? static_cast<int>(lod_level_0[i]) + context_start
                              : static_cast<int>(lod_level_0[i]);
        input_row_end = static_cast<int>(lod_level_0[i + 1]);

C
chengduoZH 已提交
224 225
        Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
                                 static_cast<int>(lod_level_0[i + 1]));
C
chengduoZH 已提交
226 227 228 229

        sequence_height = static_cast<int>(out_t.dims()[0]);

        if (input_row_begin < input_row_end) {
C
chengduoZH 已提交
230
          Tensor in_t = in.Slice(input_row_begin, input_row_end);
C
chengduoZH 已提交
231 232 233 234 235 236 237 238 239 240 241 242

          std::vector<int64_t> output_shape(
              {sequence_height, 1, 1, context_length,
               sequence_width});  // output_height, output_width,
          // input_channels, filter_height, filter_width
          out_t.Resize(framework::make_ddim(output_shape));

          std::vector<int64_t> input_shape(
              {1, input_row_end - input_row_begin,
               sequence_width});  // input_channels, input_height, input_width
          in_t.Resize(framework::make_ddim(input_shape));

C
chengduoZH 已提交
243
          col2im_ocf(context, in_t, out_t, dilation_h, dilation_w,
C
sss  
chengduoZH 已提交
244 245
                     /*stride_height*/ context_stride, /*stride_width*/ 1,
                     up_pad, down_pad, 0, 0);
C
chengduoZH 已提交
246
          out_t.Resize({sequence_height, context_length * sequence_width});
C
chengduoZH 已提交
247
        }
C
chengduoZH 已提交
248
      }
C
chengduoZH 已提交
249
    }
C
sss  
chengduoZH 已提交
250
    if (pad_grad) {
C
chengduoZH 已提交
251
      if (padding_trainable) {
C
chengduoZH 已提交
252
        for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
C
chengduoZH 已提交
253 254
          Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
                                   static_cast<int>(lod_level_0[i + 1]));
C
chengduoZH 已提交
255 256

          sequence_height = static_cast<int>(out_t.dims()[0]);
C
chengduoZH 已提交
257
          out_t.Resize({sequence_height * context_length, sequence_width});
C
chengduoZH 已提交
258

C
sss  
chengduoZH 已提交
259
          if (up_pad > 0) {
C
chengduoZH 已提交
260 261 262 263 264 265
            int padding_rows = std::min(
                up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

            for (int k = 0; k < padding_rows; ++k) {
              int padding_size =
                  k + context_length < up_pad ? context_length : up_pad - k;
C
chengduoZH 已提交
266 267 268
              Tensor out_t_sub = out_t.Slice(k * context_length,
                                             k * context_length + padding_size);
              Tensor w_sub = padding_data.Slice(k, k + padding_size);
C
chengduoZH 已提交
269 270
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
C
sss  
chengduoZH 已提交
271 272
              w_sub_e.device(*context.GetEigenDevice<Place>()) =
                  w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
273
            }
C
chengduoZH 已提交
274
          }
C
sss  
chengduoZH 已提交
275
          if (down_pad > 0) {
C
chengduoZH 已提交
276 277 278 279 280 281 282 283 284
            int down_pad_begin_row =
                std::max(
                    0, (sequence_height - context_start - context_length) + 1) +
                1;
            int padding_begin = std::max(0, context_start - sequence_height);
            int padding_size =
                sequence_height - context_start >= context_length
                    ? 1
                    : context_length - (sequence_height - context_start);
C
chengduoZH 已提交
285
            if (context_start >= sequence_height) padding_size = context_length;
C
chengduoZH 已提交
286 287 288 289 290 291 292 293 294 295 296
            int padding_idx = padding_begin;
            for (int t = 0; t + down_pad_begin_row <= sequence_height;
                 ++t, ++padding_size) {
              if (context_start >= sequence_height)
                padding_size = context_length;
              if (padding_size > context_length) {
                padding_size = context_length;
                padding_idx++;
              }
              if (padding_begin > 0 || sequence_height == context_start)
                padding_idx = padding_begin + t;
C
chengduoZH 已提交
297 298

              Tensor out_t_sub = out_t.Slice(
C
chengduoZH 已提交
299 300
                  (down_pad_begin_row + t) * context_length - padding_size,
                  (down_pad_begin_row + t) * context_length);
C
chengduoZH 已提交
301
              Tensor w_sub = padding_data.Slice(
C
chengduoZH 已提交
302 303 304
                  up_pad + padding_idx, up_pad + padding_idx + padding_size);
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
C
sss  
chengduoZH 已提交
305 306
              w_sub_e.device(*context.GetEigenDevice<Place>()) =
                  w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
307 308
            }
          }
C
chengduoZH 已提交
309
          out_t.Resize({sequence_height, context_length * sequence_width});
C
chengduoZH 已提交
310 311 312 313 314 315 316 317 318
        }
      }
    }
  }
};

}  // namespace math
}  // namespace operators
}  // namespace paddle