mot_jde_infer.py 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
import paddle
from benchmark_utils import PaddleInferBenchmark
22
from preprocess import preprocess
23 24 25 26 27 28 29 30

from tracker import JDETracker
from ppdet.modeling.mot import visualization as mot_vis
from ppdet.modeling.mot.utils import Timer as MOTTimer

from paddle.inference import Config
from paddle.inference import create_predictor
from utils import argsparser, Timer, get_current_memory_mb
31
from infer import Detector, get_test_images, print_arguments, PredictConfig
32 33 34 35 36 37 38 39

# Global dictionary
MOT_SUPPORT_MODELS = {
    'JDE',
    'FairMOT',
}


40
class JDE_Detector(Detector):
41 42 43 44
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
45
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
46
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
47
        batch_size (int): size of pre batch in inference
48 49 50 51 52 53 54 55 56 57 58 59
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
    """

    def __init__(self,
                 pred_config,
                 model_dir,
60
                 device='CPU',
61
                 run_mode='fluid',
62
                 batch_size=1,
63 64 65 66 67 68
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
69 70 71
        super(JDE_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
72
            device=device,
73 74
            run_mode=run_mode,
            batch_size=batch_size,
75 76 77 78 79 80
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
81
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
82 83
        assert pred_config.tracker, "Tracking model should have tracker"
        tp = pred_config.tracker
F
Feng Ni 已提交
84 85
        min_box_area = tp['min_box_area'] if 'min_box_area' in tp else 200
        vertical_ratio = tp['vertical_ratio'] if 'vertical_ratio' in tp else 1.6
86 87 88
        conf_thres = tp['conf_thres'] if 'conf_thres' in tp else 0.
        tracked_thresh = tp['tracked_thresh'] if 'tracked_thresh' in tp else 0.7
        metric_type = tp['metric_type'] if 'metric_type' in tp else 'euclidean'
G
George Ni 已提交
89
        self.tracker = JDETracker(
F
Feng Ni 已提交
90 91
            min_box_area=min_box_area,
            vertical_ratio=vertical_ratio,
G
George Ni 已提交
92 93 94
            conf_thres=conf_thres,
            tracked_thresh=tracked_thresh,
            metric_type=metric_type)
95

96
    def postprocess(self, pred_dets, pred_embs, threshold):
97
        online_targets = self.tracker.update(pred_dets, pred_embs)
98
        if online_targets == []:
99 100 101
            # First few frames, the model may have no tracking results but have
            # detection results,use the detection results instead, and set id -1.
            return [pred_dets[0][:4]], [pred_dets[0][4]], [-1]
102
        online_tlwhs, online_ids = [], []
G
George Ni 已提交
103
        online_scores = []
104 105 106
        for t in online_targets:
            tlwh = t.tlwh
            tid = t.track_id
G
George Ni 已提交
107
            tscore = t.score
108
            if tscore < threshold: continue
F
Feng Ni 已提交
109 110 111 112 113 114 115
            if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
            if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                    3] > self.tracker.vertical_ratio:
                continue
            online_tlwhs.append(tlwh)
            online_ids.append(tid)
            online_scores.append(tscore)
G
George Ni 已提交
116
        return online_tlwhs, online_scores, online_ids
117

118
    def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
119 120
        '''
        Args:
121
            image_list (list): list of image
122 123
            threshold (float): threshold of predicted box' score
        Returns:
124
            online_tlwhs, online_scores, online_ids (np.ndarray)
125 126
        '''
        self.det_times.preprocess_time_s.start()
127
        inputs = self.preprocess(image_list)
128
        self.det_times.preprocess_time_s.end()
G
George Ni 已提交
129

130 131 132 133 134 135
        pred_dets, pred_embs = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

G
George Ni 已提交
136 137 138 139 140 141
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            pred_dets = boxes_tensor.copy_to_cpu()

142 143 144 145 146 147 148 149 150 151 152
        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            pred_dets = boxes_tensor.copy_to_cpu()
            embs_tensor = self.predictor.get_output_handle(output_names[1])
            pred_embs = embs_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
153 154
        online_tlwhs, online_scores, online_ids = self.postprocess(
            pred_dets, pred_embs, threshold)
155 156
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
G
George Ni 已提交
157
        return online_tlwhs, online_scores, online_ids
158 159


G
George Ni 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
def write_mot_results(filename, results, data_type='mot'):
    if data_type in ['mot', 'mcmot', 'lab']:
        save_format = '{frame},{id},{x1},{y1},{w},{h},{score},-1,-1,-1\n'
    elif data_type == 'kitti':
        save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
    else:
        raise ValueError(data_type)

    with open(filename, 'w') as f:
        for frame_id, tlwhs, tscores, track_ids in results:
            if data_type == 'kitti':
                frame_id -= 1
            for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
                x1, y1, w, h = tlwh
                x2, y2 = x1 + w, y1 + h
                line = save_format.format(
                    frame=frame_id,
                    id=track_id,
                    x1=x1,
                    y1=y1,
                    x2=x2,
                    y2=y2,
                    w=w,
                    h=h,
                    score=score)
                f.write(line)


G
George Ni 已提交
188 189
def predict_image(detector, image_list):
    results = []
G
George Ni 已提交
190
    image_list.sort()
G
George Ni 已提交
191 192 193
    for i, img_file in enumerate(image_list):
        frame = cv2.imread(img_file)
        if FLAGS.run_benchmark:
194
            detector.predict([frame], FLAGS.threshold, warmup=10, repeats=10)
G
George Ni 已提交
195 196 197 198 199 200 201
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
            online_tlwhs, online_scores, online_ids = detector.predict(
202
                [frame], FLAGS.threshold)
G
George Ni 已提交
203 204 205 206 207
            online_im = mot_vis.plot_tracking(
                frame, online_tlwhs, online_ids, online_scores, frame_id=i)
            if FLAGS.save_images:
                if not os.path.exists(FLAGS.output_dir):
                    os.makedirs(FLAGS.output_dir)
208 209 210 211
                img_name = os.path.split(img_file)[-1]
                out_path = os.path.join(FLAGS.output_dir, img_name)
                cv2.imwrite(out_path, online_im)
                print("save result to: " + out_path)
G
George Ni 已提交
212 213


214
def predict_video(detector, camera_id):
215
    video_name = 'mot_output.mp4'
216 217 218 219 220
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
221
    # Get Video info : resolution, fps, frame count
222 223
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
224 225 226 227
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

228 229 230
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
G
George Ni 已提交
231
    if not FLAGS.save_images:
232
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
G
George Ni 已提交
233
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
234 235
    frame_id = 0
    timer = MOTTimer()
G
George Ni 已提交
236
    results = []
237 238 239 240 241
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer.tic()
G
George Ni 已提交
242
        online_tlwhs, online_scores, online_ids = detector.predict(
243
            [frame], FLAGS.threshold)
244 245
        timer.toc()

G
George Ni 已提交
246 247
        results.append((frame_id + 1, online_tlwhs, online_scores, online_ids))
        fps = 1. / timer.average_time
G
George Ni 已提交
248
        im = mot_vis.plot_tracking(
249 250 251
            frame,
            online_tlwhs,
            online_ids,
G
George Ni 已提交
252
            online_scores,
253
            frame_id=frame_id,
G
George Ni 已提交
254
            fps=fps)
G
George Ni 已提交
255 256 257 258 259
        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
G
George Ni 已提交
260
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
G
George Ni 已提交
261 262
        else:
            writer.write(im)
263 264 265 266 267 268 269 270 271

        if FLAGS.save_mot_txt_per_img:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            result_filename = os.path.join(save_dir,
                                           '{:05d}.txt'.format(frame_id))
            write_mot_results(result_filename, [results[-1]])

272
        frame_id += 1
273
        print('detect frame: %d' % (frame_id))
274 275 276 277
        if camera_id != -1:
            cv2.imshow('Tracking Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
G
George Ni 已提交
278
    if FLAGS.save_mot_txts:
G
George Ni 已提交
279 280 281
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
        write_mot_results(result_filename, results)
G
George Ni 已提交
282 283 284

    if FLAGS.save_images:
        save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
F
Feng Ni 已提交
285 286
        cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(save_dir,
                                                              out_path)
G
George Ni 已提交
287 288 289 290
        os.system(cmd_str)
        print('Save video in {}.'.format(out_path))
    else:
        writer.release()
291 292 293


def main():
G
George Ni 已提交
294
    pred_config = PredictConfig(FLAGS.model_dir)
295
    detector = JDE_Detector(
296 297
        pred_config,
        FLAGS.model_dir,
298
        device=FLAGS.device,
299 300 301 302 303 304 305 306 307 308 309 310
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, FLAGS.camera_id)
    else:
G
George Ni 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, img_list)
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            data_info = {
                'batch_size': 1,
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
            det_log('MOT')
337 338 339 340 341 342 343


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
344 345 346
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
347 348

    main()