main_jde.cc 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>

#include <iostream>
#include <string>
#include <vector>
#include <numeric>
#include <sys/types.h>
#include <sys/stat.h>
#include <math.h>
#include <algorithm>

#ifdef _WIN32
#include <direct.h>
#include <io.h>
#elif LINUX
#include <stdarg.h>
#include <sys/stat.h>
#endif

#include "include/object_detector.h"
#include "include/jde_detector.h"
#include <gflags/gflags.h>
#include <opencv2/opencv.hpp>


DEFINE_string(model_dir, "", "Path of inference model");
DEFINE_int32(batch_size, 1, "batch_size");
DEFINE_string(video_file, "", "Path of input video, `video_file` or `camera_id` has a highest priority.");
DEFINE_int32(camera_id, -1, "Device id of camera to predict");
DEFINE_bool(use_gpu, false, "Deprecated, please use `--device` to set the device you want to run.");
DEFINE_string(device, "CPU", "Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU.");
DEFINE_double(threshold, 0.5, "Threshold of score.");
DEFINE_string(output_dir, "output", "Directory of output visualization files.");
DEFINE_string(run_mode, "fluid", "Mode of running(fluid/trt_fp32/trt_fp16/trt_int8)");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute");
DEFINE_bool(run_benchmark, false, "Whether to predict a image_file repeatedly for benchmark");
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU");
DEFINE_int32(cpu_threads, 1, "Num of threads with CPU");
DEFINE_int32(trt_min_shape, 1, "Min shape of TRT DynamicShapeI");
DEFINE_int32(trt_max_shape, 1280, "Max shape of TRT DynamicShapeI");
DEFINE_int32(trt_opt_shape, 640, "Opt shape of TRT DynamicShapeI");
DEFINE_bool(trt_calib_mode, false, "If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True");

void PrintBenchmarkLog(std::vector<double> det_time, int img_num){
  LOG(INFO) << "----------------------- Config info -----------------------";
  LOG(INFO) << "runtime_device: " << FLAGS_device;
  LOG(INFO) << "ir_optim: " << "True";
  LOG(INFO) << "enable_memory_optim: " << "True";
  int has_trt = FLAGS_run_mode.find("trt");
  if (has_trt >= 0) {
    LOG(INFO) << "enable_tensorrt: " << "True";
    std::string precision = FLAGS_run_mode.substr(4, 8);
    LOG(INFO) << "precision: " << precision;
  } else {
    LOG(INFO) << "enable_tensorrt: " << "False";
    LOG(INFO) << "precision: " << "fp32";
  }
  LOG(INFO) << "enable_mkldnn: " << (FLAGS_use_mkldnn ? "True" : "False");
  LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_threads;
  LOG(INFO) << "----------------------- Data info -----------------------";
  LOG(INFO) << "batch_size: " << FLAGS_batch_size;
  LOG(INFO) << "input_shape: " << "dynamic shape";
  LOG(INFO) << "----------------------- Model info -----------------------";
  FLAGS_model_dir.erase(FLAGS_model_dir.find_last_not_of("/") + 1);
  LOG(INFO) << "model_name: " << FLAGS_model_dir.substr(FLAGS_model_dir.find_last_of('/') + 1);
  LOG(INFO) << "----------------------- Perf info ------------------------";
  LOG(INFO) << "Total number of predicted data: " << img_num
            << " and total time spent(ms): "
            << std::accumulate(det_time.begin(), det_time.end(), 0);
  LOG(INFO) << "preproce_time(ms): " << det_time[0] / img_num
            << ", inference_time(ms): " << det_time[1] / img_num
            << ", postprocess_time(ms): " << det_time[2] / img_num;
}

static std::string DirName(const std::string &filepath) {
  auto pos = filepath.rfind(OS_PATH_SEP);
  if (pos == std::string::npos) {
    return "";
  }
  return filepath.substr(0, pos);
}

static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}

static void MkDir(const std::string& path) {
  if (PathExists(path)) return;
  int ret = 0;
#ifdef _WIN32
  ret = _mkdir(path.c_str());
#else
  ret = mkdir(path.c_str(), 0755);
#endif  // !_WIN32
  if (ret != 0) {
    std::string path_error(path);
    path_error += " mkdir failed!";
    throw std::runtime_error(path_error);
  }
}

static void MkDirs(const std::string& path) {
  if (path.empty()) return;
  if (PathExists(path)) return;

  MkDirs(DirName(path));
  MkDir(path);
}

void PredictVideo(const std::string& video_path,
131 132
                  PaddleDetection::JDEDetector* mot,
                  const std::string& output_dir = "output") {
133 134
  // Open video
  cv::VideoCapture capture;
135
  std::string video_out_name = "output.mp4";
136 137 138 139
  if (FLAGS_camera_id != -1){
    capture.open(FLAGS_camera_id);
  }else{
    capture.open(video_path.c_str());
140
    video_out_name = video_path.substr(video_path.find_last_of(OS_PATH_SEP) + 1);
141 142 143 144 145 146
  }
  if (!capture.isOpened()) {
    printf("can not open video : %s\n", video_path.c_str());
    return;
  }

147
  // Get Video info : resolution, fps, frame count
148 149 150
  int video_width = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_WIDTH));
  int video_height = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_HEIGHT));
  int video_fps = static_cast<int>(capture.get(CV_CAP_PROP_FPS));
151 152
  int video_frame_count = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_COUNT));
  printf("fps: %d, frame_count: %d\n", video_fps, video_frame_count);
153 154 155

  // Create VideoWriter for output
  cv::VideoWriter video_out;
156 157 158 159 160
  std::string video_out_path(output_dir);
  if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
    video_out_path += OS_PATH_SEP;
  }
  video_out_path += video_out_name;
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  video_out.open(video_out_path.c_str(),
                 0x00000021,
                 video_fps,
                 cv::Size(video_width, video_height),
                 true);
  if (!video_out.isOpened()) {
    printf("create video writer failed!\n");
    return;
  }

  PaddleDetection::MOT_Result result;
  std::vector<double> det_times(3);
  double times;
  // Capture all frames and do inference
  cv::Mat frame;
176
  int frame_id = 1;
177 178 179 180 181 182
  while (capture.read(frame)) {
    if (frame.empty()) {
      break;
    }
    std::vector<cv::Mat> imgs;
    imgs.push_back(frame);
183 184
    printf("detect frame: %d\n", frame_id);
    mot->Predict(imgs, FLAGS_threshold, 0, 1, &result, &det_times);
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    frame_id += 1;
    times = std::accumulate(det_times.begin(), det_times.end(), 0) / frame_id;

    cv::Mat out_im = PaddleDetection::VisualizeTrackResult(
        frame, result, 1000./times, frame_id);
    
    video_out.write(out_im);
  }
  capture.release();
  video_out.release();
  PrintBenchmarkLog(det_times, frame_id);
  printf("Visualized output saved as %s\n", video_out_path.c_str());      
}

int main(int argc, char** argv) {
  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);
  if (FLAGS_model_dir.empty()
      || FLAGS_video_file.empty()) {
    std::cout << "Usage: ./main --model_dir=/PATH/TO/INFERENCE_MODEL/ "
                << "--video_file=/PATH/TO/INPUT/VIDEO/" << std::endl;
    return -1;
  }
  if (!(FLAGS_run_mode == "fluid" || FLAGS_run_mode == "trt_fp32"
      || FLAGS_run_mode == "trt_fp16" || FLAGS_run_mode == "trt_int8")) {
    std::cout << "run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or 'trt_int8'.";
    return -1;
  }
  transform(FLAGS_device.begin(),FLAGS_device.end(),FLAGS_device.begin(),::toupper);
  if (!(FLAGS_device == "CPU" || FLAGS_device == "GPU" || FLAGS_device == "XPU")) {
    std::cout << "device should be 'CPU', 'GPU' or 'XPU'.";
    return -1;
  }
  if (FLAGS_use_gpu) {
    std::cout << "Deprecated, please use `--device` to set the device you want to run.";
    return -1;
  }

  // Do inference on input video or image
  PaddleDetection::JDEDetector mot(FLAGS_model_dir, FLAGS_device, FLAGS_use_mkldnn,
                        FLAGS_cpu_threads, FLAGS_run_mode, FLAGS_batch_size,FLAGS_gpu_id,
                        FLAGS_trt_min_shape, FLAGS_trt_max_shape, FLAGS_trt_opt_shape,
			FLAGS_trt_calib_mode);
228 229 230 231
  if (!PathExists(FLAGS_output_dir)) {
      MkDirs(FLAGS_output_dir);
  }
  PredictVideo(FLAGS_video_file, &mot, FLAGS_output_dir);
232 233
  return 0;
}