// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #ifdef _WIN32 #include #include #elif LINUX #include #include #endif #include "include/object_detector.h" #include "include/jde_detector.h" #include #include DEFINE_string(model_dir, "", "Path of inference model"); DEFINE_int32(batch_size, 1, "batch_size"); DEFINE_string(video_file, "", "Path of input video, `video_file` or `camera_id` has a highest priority."); DEFINE_int32(camera_id, -1, "Device id of camera to predict"); DEFINE_bool(use_gpu, false, "Deprecated, please use `--device` to set the device you want to run."); DEFINE_string(device, "CPU", "Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."); DEFINE_double(threshold, 0.5, "Threshold of score."); DEFINE_string(output_dir, "output", "Directory of output visualization files."); DEFINE_string(run_mode, "fluid", "Mode of running(fluid/trt_fp32/trt_fp16/trt_int8)"); DEFINE_int32(gpu_id, 0, "Device id of GPU to execute"); DEFINE_bool(run_benchmark, false, "Whether to predict a image_file repeatedly for benchmark"); DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU"); DEFINE_int32(cpu_threads, 1, "Num of threads with CPU"); DEFINE_int32(trt_min_shape, 1, "Min shape of TRT DynamicShapeI"); DEFINE_int32(trt_max_shape, 1280, "Max shape of TRT DynamicShapeI"); DEFINE_int32(trt_opt_shape, 640, "Opt shape of TRT DynamicShapeI"); DEFINE_bool(trt_calib_mode, false, "If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True"); void PrintBenchmarkLog(std::vector det_time, int img_num){ LOG(INFO) << "----------------------- Config info -----------------------"; LOG(INFO) << "runtime_device: " << FLAGS_device; LOG(INFO) << "ir_optim: " << "True"; LOG(INFO) << "enable_memory_optim: " << "True"; int has_trt = FLAGS_run_mode.find("trt"); if (has_trt >= 0) { LOG(INFO) << "enable_tensorrt: " << "True"; std::string precision = FLAGS_run_mode.substr(4, 8); LOG(INFO) << "precision: " << precision; } else { LOG(INFO) << "enable_tensorrt: " << "False"; LOG(INFO) << "precision: " << "fp32"; } LOG(INFO) << "enable_mkldnn: " << (FLAGS_use_mkldnn ? "True" : "False"); LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_threads; LOG(INFO) << "----------------------- Data info -----------------------"; LOG(INFO) << "batch_size: " << FLAGS_batch_size; LOG(INFO) << "input_shape: " << "dynamic shape"; LOG(INFO) << "----------------------- Model info -----------------------"; FLAGS_model_dir.erase(FLAGS_model_dir.find_last_not_of("/") + 1); LOG(INFO) << "model_name: " << FLAGS_model_dir.substr(FLAGS_model_dir.find_last_of('/') + 1); LOG(INFO) << "----------------------- Perf info ------------------------"; LOG(INFO) << "Total number of predicted data: " << img_num << " and total time spent(ms): " << std::accumulate(det_time.begin(), det_time.end(), 0); LOG(INFO) << "preproce_time(ms): " << det_time[0] / img_num << ", inference_time(ms): " << det_time[1] / img_num << ", postprocess_time(ms): " << det_time[2] / img_num; } static std::string DirName(const std::string &filepath) { auto pos = filepath.rfind(OS_PATH_SEP); if (pos == std::string::npos) { return ""; } return filepath.substr(0, pos); } static bool PathExists(const std::string& path){ #ifdef _WIN32 struct _stat buffer; return (_stat(path.c_str(), &buffer) == 0); #else struct stat buffer; return (stat(path.c_str(), &buffer) == 0); #endif // !_WIN32 } static void MkDir(const std::string& path) { if (PathExists(path)) return; int ret = 0; #ifdef _WIN32 ret = _mkdir(path.c_str()); #else ret = mkdir(path.c_str(), 0755); #endif // !_WIN32 if (ret != 0) { std::string path_error(path); path_error += " mkdir failed!"; throw std::runtime_error(path_error); } } static void MkDirs(const std::string& path) { if (path.empty()) return; if (PathExists(path)) return; MkDirs(DirName(path)); MkDir(path); } void PredictVideo(const std::string& video_path, PaddleDetection::JDEDetector* mot, const std::string& output_dir = "output") { // Open video cv::VideoCapture capture; std::string video_out_name = "output.mp4"; if (FLAGS_camera_id != -1){ capture.open(FLAGS_camera_id); }else{ capture.open(video_path.c_str()); video_out_name = video_path.substr(video_path.find_last_of(OS_PATH_SEP) + 1); } if (!capture.isOpened()) { printf("can not open video : %s\n", video_path.c_str()); return; } // Get Video info : resolution, fps, frame count int video_width = static_cast(capture.get(CV_CAP_PROP_FRAME_WIDTH)); int video_height = static_cast(capture.get(CV_CAP_PROP_FRAME_HEIGHT)); int video_fps = static_cast(capture.get(CV_CAP_PROP_FPS)); int video_frame_count = static_cast(capture.get(CV_CAP_PROP_FRAME_COUNT)); printf("fps: %d, frame_count: %d\n", video_fps, video_frame_count); // Create VideoWriter for output cv::VideoWriter video_out; std::string video_out_path(output_dir); if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) { video_out_path += OS_PATH_SEP; } video_out_path += video_out_name; video_out.open(video_out_path.c_str(), 0x00000021, video_fps, cv::Size(video_width, video_height), true); if (!video_out.isOpened()) { printf("create video writer failed!\n"); return; } PaddleDetection::MOT_Result result; std::vector det_times(3); double times; // Capture all frames and do inference cv::Mat frame; int frame_id = 1; while (capture.read(frame)) { if (frame.empty()) { break; } std::vector imgs; imgs.push_back(frame); printf("detect frame: %d\n", frame_id); mot->Predict(imgs, FLAGS_threshold, 0, 1, &result, &det_times); frame_id += 1; times = std::accumulate(det_times.begin(), det_times.end(), 0) / frame_id; cv::Mat out_im = PaddleDetection::VisualizeTrackResult( frame, result, 1000./times, frame_id); video_out.write(out_im); } capture.release(); video_out.release(); PrintBenchmarkLog(det_times, frame_id); printf("Visualized output saved as %s\n", video_out_path.c_str()); } int main(int argc, char** argv) { // Parsing command-line google::ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_model_dir.empty() || FLAGS_video_file.empty()) { std::cout << "Usage: ./main --model_dir=/PATH/TO/INFERENCE_MODEL/ " << "--video_file=/PATH/TO/INPUT/VIDEO/" << std::endl; return -1; } if (!(FLAGS_run_mode == "fluid" || FLAGS_run_mode == "trt_fp32" || FLAGS_run_mode == "trt_fp16" || FLAGS_run_mode == "trt_int8")) { std::cout << "run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or 'trt_int8'."; return -1; } transform(FLAGS_device.begin(),FLAGS_device.end(),FLAGS_device.begin(),::toupper); if (!(FLAGS_device == "CPU" || FLAGS_device == "GPU" || FLAGS_device == "XPU")) { std::cout << "device should be 'CPU', 'GPU' or 'XPU'."; return -1; } if (FLAGS_use_gpu) { std::cout << "Deprecated, please use `--device` to set the device you want to run."; return -1; } // Do inference on input video or image PaddleDetection::JDEDetector mot(FLAGS_model_dir, FLAGS_device, FLAGS_use_mkldnn, FLAGS_cpu_threads, FLAGS_run_mode, FLAGS_batch_size,FLAGS_gpu_id, FLAGS_trt_min_shape, FLAGS_trt_max_shape, FLAGS_trt_opt_shape, FLAGS_trt_calib_mode); if (!PathExists(FLAGS_output_dir)) { MkDirs(FLAGS_output_dir); } PredictVideo(FLAGS_video_file, &mot, FLAGS_output_dir); return 0; }