optimizer.py 12.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import sys
Q
qingqing01 已提交
20 21 22 23 24 25 26 27
import math
import paddle
import paddle.nn as nn

import paddle.optimizer as optimizer
import paddle.regularizer as regularizer

from ppdet.core.workspace import register, serializable
28
import copy
Q
qingqing01 已提交
29

30 31
from .adamw import AdamWDL, build_adamwdl

Q
qingqing01 已提交
32 33 34 35 36 37
__all__ = ['LearningRate', 'OptimizerBuilder']

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


38 39 40 41 42 43 44 45 46
@serializable
class CosineDecay(object):
    """
    Cosine learning rate decay

    Args:
        max_epochs (int): max epochs for the training process.
            if you commbine cosine decay with warmup, it is recommended that
            the max_iters is much larger than the warmup iter
47 48 49 50
        use_warmup (bool): whether to use warmup. Default: True.
        min_lr_ratio (float): minimum learning rate ratio. Default: 0.
        last_plateau_epochs (int): use minimum learning rate in
            the last few epochs. Default: 0.
51 52
    """

53 54 55 56 57
    def __init__(self,
                 max_epochs=1000,
                 use_warmup=True,
                 min_lr_ratio=0.,
                 last_plateau_epochs=0):
58 59
        self.max_epochs = max_epochs
        self.use_warmup = use_warmup
60 61
        self.min_lr_ratio = min_lr_ratio
        self.last_plateau_epochs = last_plateau_epochs
62 63 64 65 66 67 68 69 70

    def __call__(self,
                 base_lr=None,
                 boundary=None,
                 value=None,
                 step_per_epoch=None):
        assert base_lr is not None, "either base LR or values should be provided"

        max_iters = self.max_epochs * int(step_per_epoch)
71 72
        last_plateau_iters = self.last_plateau_epochs * int(step_per_epoch)
        min_lr = base_lr * self.min_lr_ratio
73
        if boundary is not None and value is not None and self.use_warmup:
74
            # use warmup
M
minghaoBD 已提交
75
            warmup_iters = len(boundary)
76 77
            for i in range(int(boundary[-1]), max_iters):
                boundary.append(i)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
                if i < max_iters - last_plateau_iters:
                    decayed_lr = min_lr + (base_lr - min_lr) * 0.5 * (math.cos(
                        (i - warmup_iters) * math.pi /
                        (max_iters - warmup_iters - last_plateau_iters)) + 1)
                    value.append(decayed_lr)
                else:
                    value.append(min_lr)
            return optimizer.lr.PiecewiseDecay(boundary, value)
        elif last_plateau_iters > 0:
            # not use warmup, but set `last_plateau_epochs` > 0
            boundary = []
            value = []
            for i in range(max_iters):
                if i < max_iters - last_plateau_iters:
                    decayed_lr = min_lr + (base_lr - min_lr) * 0.5 * (math.cos(
                        i * math.pi / (max_iters - last_plateau_iters)) + 1)
                    value.append(decayed_lr)
                else:
                    value.append(min_lr)
                if i > 0:
                    boundary.append(i)
99 100
            return optimizer.lr.PiecewiseDecay(boundary, value)

W
Wenyu 已提交
101
        return optimizer.lr.CosineAnnealingDecay(
102
            base_lr, T_max=max_iters, eta_min=min_lr)
103 104


Q
qingqing01 已提交
105 106 107 108 109 110 111 112 113 114
@serializable
class PiecewiseDecay(object):
    """
    Multi step learning rate decay

    Args:
        gamma (float | list): decay factor
        milestones (list): steps at which to decay learning rate
    """

115 116 117 118 119
    def __init__(self,
                 gamma=[0.1, 0.01],
                 milestones=[8, 11],
                 values=None,
                 use_warmup=True):
Q
qingqing01 已提交
120 121 122 123 124 125 126 127
        super(PiecewiseDecay, self).__init__()
        if type(gamma) is not list:
            self.gamma = []
            for i in range(len(milestones)):
                self.gamma.append(gamma / 10**i)
        else:
            self.gamma = gamma
        self.milestones = milestones
128 129
        self.values = values
        self.use_warmup = use_warmup
Q
qingqing01 已提交
130 131 132 133 134 135

    def __call__(self,
                 base_lr=None,
                 boundary=None,
                 value=None,
                 step_per_epoch=None):
136
        if boundary is not None and self.use_warmup:
Q
qingqing01 已提交
137
            boundary.extend([int(step_per_epoch) * i for i in self.milestones])
138 139 140
        else:
            # do not use LinearWarmup
            boundary = [int(step_per_epoch) * i for i in self.milestones]
G
George Ni 已提交
141
            value = [base_lr]  # during step[0, boundary[0]] is base_lr
Q
qingqing01 已提交
142

S
shangliang Xu 已提交
143
        # self.values is setted directly in config
144 145 146 147 148
        if self.values is not None:
            assert len(self.milestones) + 1 == len(self.values)
            return optimizer.lr.PiecewiseDecay(boundary, self.values)

        # value is computed by self.gamma
149 150 151
        value = value if value is not None else [base_lr]
        for i in self.gamma:
            value.append(base_lr * i)
Q
qingqing01 已提交
152 153 154 155 156 157 158 159 160 161 162 163

        return optimizer.lr.PiecewiseDecay(boundary, value)


@serializable
class LinearWarmup(object):
    """
    Warm up learning rate linearly

    Args:
        steps (int): warm up steps
        start_factor (float): initial learning rate factor
164 165
        epochs (int|None): use epochs as warm up steps, the priority
            of `epochs` is higher than `steps`. Default: None.
Q
qingqing01 已提交
166 167
    """

168
    def __init__(self, steps=500, start_factor=1. / 3, epochs=None):
Q
qingqing01 已提交
169 170 171
        super(LinearWarmup, self).__init__()
        self.steps = steps
        self.start_factor = start_factor
172
        self.epochs = epochs
Q
qingqing01 已提交
173

G
George Ni 已提交
174
    def __call__(self, base_lr, step_per_epoch):
Q
qingqing01 已提交
175 176
        boundary = []
        value = []
177 178 179 180 181
        warmup_steps = self.epochs * step_per_epoch \
            if self.epochs is not None else self.steps
        for i in range(warmup_steps + 1):
            if warmup_steps > 0:
                alpha = i / warmup_steps
182 183 184
                factor = self.start_factor * (1 - alpha) + alpha
                lr = base_lr * factor
                value.append(lr)
Q
qingqing01 已提交
185 186 187 188 189
            if i > 0:
                boundary.append(i)
        return boundary, value


G
George Ni 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
@serializable
class BurninWarmup(object):
    """
    Warm up learning rate in burnin mode
    Args:
        steps (int): warm up steps
    """

    def __init__(self, steps=1000):
        super(BurninWarmup, self).__init__()
        self.steps = steps

    def __call__(self, base_lr, step_per_epoch):
        boundary = []
        value = []
        burnin = min(self.steps, step_per_epoch)
        for i in range(burnin + 1):
            factor = (i * 1.0 / burnin)**4
            lr = base_lr * factor
            value.append(lr)
            if i > 0:
                boundary.append(i)
        return boundary, value


F
Feng Ni 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
@serializable
class ExpWarmup(object):
    """
    Warm up learning rate in exponential mode
    Args:
        steps (int): warm up steps.
        epochs (int|None): use epochs as warm up steps, the priority
            of `epochs` is higher than `steps`. Default: None.
    """

    def __init__(self, steps=5, epochs=None):
        super(ExpWarmup, self).__init__()
        self.steps = steps
        self.epochs = epochs

    def __call__(self, base_lr, step_per_epoch):
        boundary = []
        value = []
        warmup_steps = self.epochs * step_per_epoch if self.epochs is not None else self.steps
        for i in range(warmup_steps + 1):
            factor = (i / float(warmup_steps))**2
            value.append(base_lr * factor)
            if i > 0:
                boundary.append(i)
        return boundary, value


Q
qingqing01 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
@register
class LearningRate(object):
    """
    Learning Rate configuration

    Args:
        base_lr (float): base learning rate
        schedulers (list): learning rate schedulers
    """
    __category__ = 'optim'

    def __init__(self,
                 base_lr=0.01,
                 schedulers=[PiecewiseDecay(), LinearWarmup()]):
        super(LearningRate, self).__init__()
        self.base_lr = base_lr
258 259 260 261 262 263 264 265 266 267 268 269
        self.schedulers = []

        schedulers = copy.deepcopy(schedulers)
        for sched in schedulers:
            if isinstance(sched, dict):
                # support dict sched instantiate
                module = sys.modules[__name__]
                type = sched.pop("name")
                scheduler = getattr(module, type)(**sched)
                self.schedulers.append(scheduler)
            else:
                self.schedulers.append(sched)
Q
qingqing01 已提交
270 271

    def __call__(self, step_per_epoch):
272 273 274 275 276
        assert len(self.schedulers) >= 1
        if not self.schedulers[0].use_warmup:
            return self.schedulers[0](base_lr=self.base_lr,
                                      step_per_epoch=step_per_epoch)

S
shangliang Xu 已提交
277
        # TODO: split warmup & decay
Q
qingqing01 已提交
278
        # warmup
G
George Ni 已提交
279
        boundary, value = self.schedulers[1](self.base_lr, step_per_epoch)
Q
qingqing01 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        # decay
        decay_lr = self.schedulers[0](self.base_lr, boundary, value,
                                      step_per_epoch)
        return decay_lr


@register
class OptimizerBuilder():
    """
    Build optimizer handles
    Args:
        regularizer (object): an `Regularizer` instance
        optimizer (object): an `Optimizer` instance
    """
    __category__ = 'optim'

    def __init__(self,
                 clip_grad_by_norm=None,
                 regularizer={'type': 'L2',
                              'factor': .0001},
                 optimizer={'type': 'Momentum',
                            'momentum': .9}):
        self.clip_grad_by_norm = clip_grad_by_norm
        self.regularizer = regularizer
        self.optimizer = optimizer

W
Wenyu 已提交
306
    def __call__(self, learning_rate, model=None):
Q
qingqing01 已提交
307
        if self.clip_grad_by_norm is not None:
W
wangxinxin08 已提交
308
            grad_clip = nn.ClipGradByGlobalNorm(
Q
qingqing01 已提交
309 310 311
                clip_norm=self.clip_grad_by_norm)
        else:
            grad_clip = None
312
        if self.regularizer and self.regularizer != 'None':
Q
qingqing01 已提交
313 314 315 316 317 318 319 320 321
            reg_type = self.regularizer['type'] + 'Decay'
            reg_factor = self.regularizer['factor']
            regularization = getattr(regularizer, reg_type)(reg_factor)
        else:
            regularization = None

        optim_args = self.optimizer.copy()
        optim_type = optim_args['type']
        del optim_args['type']
322 323 324 325

        if optim_type == 'AdamWDL':
            return build_adamwdl(model, lr=learning_rate, **optim_args)

326 327
        if optim_type != 'AdamW':
            optim_args['weight_decay'] = regularization
328

Q
qingqing01 已提交
329
        op = getattr(optimizer, optim_type)
W
Wenyu 已提交
330

W
Wenyu 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343
        if 'param_groups' in optim_args:
            assert isinstance(optim_args['param_groups'], list), ''

            param_groups = optim_args.pop('param_groups')

            params, visited = [], []
            for group in param_groups:
                assert isinstance(group,
                                  dict) and 'params' in group and isinstance(
                                      group['params'], list), ''
                _params = {
                    n: p
                    for n, p in model.named_parameters()
344 345
                    if any([k in n
                            for k in group['params']] and p.trainable is True)
W
Wenyu 已提交
346 347 348 349 350 351 352 353
                }
                _group = group.copy()
                _group.update({'params': list(_params.values())})

                params.append(_group)
                visited.extend(list(_params.keys()))

            ext_params = [
354 355
                p for n, p in model.named_parameters()
                if n not in visited and p.trainable is True
W
Wenyu 已提交
356 357 358 359 360 361 362 363
            ]

            if len(ext_params) < len(model.parameters()):
                params.append({'params': ext_params})

            elif len(ext_params) > len(model.parameters()):
                raise RuntimeError

W
Wenyu 已提交
364
        else:
365 366
            _params = model.parameters()
            params = [param for param in _params if param.trainable is True]
W
Wenyu 已提交
367

Q
qingqing01 已提交
368
        return op(learning_rate=learning_rate,
369
                  parameters=params,
Q
qingqing01 已提交
370 371
                  grad_clip=grad_clip,
                  **optim_args)