Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8693e1d0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8693e1d0
编写于
6月 20, 2022
作者:
W
Wenyu
提交者:
GitHub
6月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
AdamWDL builder and VIT checkpoint functionality (#6232)
* upgrade adawm to adawmdl for transoformer * rename arg
上级
bf895541
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
51 addition
and
32 deletion
+51
-32
ppdet/modeling/backbones/vision_transformer.py
ppdet/modeling/backbones/vision_transformer.py
+13
-4
ppdet/optimizer/adamw.py
ppdet/optimizer/adamw.py
+31
-28
ppdet/optimizer/optimizer.py
ppdet/optimizer/optimizer.py
+7
-0
未找到文件。
ppdet/modeling/backbones/vision_transformer.py
浏览文件 @
8693e1d0
...
...
@@ -340,12 +340,15 @@ class VisionTransformer(nn.Layer):
use_abs_pos_emb
=
False
,
use_sincos_pos_emb
=
True
,
with_fpn
=
True
,
use_checkpoint
=
False
,
**
args
):
super
().
__init__
()
self
.
img_size
=
img_size
self
.
embed_dim
=
embed_dim
self
.
with_fpn
=
with_fpn
self
.
use_checkpoint
=
use_checkpoint
if
use_checkpoint
:
print
(
'please set: FLAGS_allocator_strategy=naive_best_fit'
)
self
.
patch_embed
=
PatchEmbed
(
img_size
=
img_size
,
patch_size
=
patch_size
,
...
...
@@ -575,7 +578,7 @@ class VisionTransformer(nn.Layer):
def
forward
(
self
,
x
):
x
=
x
[
'image'
]
if
isinstance
(
x
,
dict
)
else
x
_
,
_
,
w
,
h
=
x
.
shape
_
,
_
,
h
,
w
=
x
.
shape
x
=
self
.
patch_embed
(
x
)
...
...
@@ -586,7 +589,8 @@ class VisionTransformer(nn.Layer):
x
=
paddle
.
concat
([
cls_tokens
,
x
],
axis
=
1
)
if
self
.
pos_embed
is
not
None
:
x
=
x
+
self
.
interpolate_pos_encoding
(
x
,
w
,
h
)
# x = x + self.interpolate_pos_encoding(x, w, h)
x
=
x
+
self
.
interpolate_pos_encoding
(
x
,
h
,
w
)
x
=
self
.
pos_drop
(
x
)
...
...
@@ -597,7 +601,12 @@ class VisionTransformer(nn.Layer):
feats
=
[]
for
idx
,
blk
in
enumerate
(
self
.
blocks
):
x
=
blk
(
x
,
rel_pos_bias
)
if
self
.
use_checkpoint
:
x
=
paddle
.
distributed
.
fleet
.
utils
.
recompute
(
blk
,
x
,
rel_pos_bias
,
**
{
"preserve_rng_state"
:
True
})
else
:
x
=
blk
(
x
,
rel_pos_bias
)
if
idx
in
self
.
out_indices
:
xp
=
paddle
.
reshape
(
paddle
.
transpose
(
...
...
ppdet/optimizer/adamw.py
浏览文件 @
8693e1d0
...
...
@@ -18,6 +18,7 @@ from __future__ import print_function
from
paddle.optimizer
import
AdamW
from
functools
import
partial
import
re
def
layerwise_lr_decay
(
decay_rate
,
name_dict
,
n_layers
,
param
):
...
...
@@ -34,15 +35,20 @@ def layerwise_lr_decay(decay_rate, name_dict, n_layers, param):
"""
ratio
=
1.0
static_name
=
name_dict
[
param
.
name
]
if
"blocks"
in
static_name
:
idx
=
static_name
.
find
(
"blocks."
)
layer
=
int
(
static_name
[
idx
:].
split
(
"."
)[
1
])
if
'blocks.'
in
static_name
or
'layers.'
in
static_name
:
idx_1
=
static_name
.
find
(
'blocks.'
)
idx_2
=
static_name
.
find
(
'layers.'
)
assert
any
([
x
>=
0
for
x
in
[
idx_1
,
idx_2
]]),
''
idx
=
idx_1
if
idx_1
>=
0
else
idx_2
# idx = re.findall('[blocks|layers]\.(\d+)\.', static_name)[0]
layer
=
int
(
static_name
[
idx
:].
split
(
'.'
)[
1
])
ratio
=
decay_rate
**
(
n_layers
-
layer
)
elif
"cls_token"
in
static_name
or
'patch_embed'
in
static_name
:
elif
'cls_token'
in
static_name
or
'patch_embed'
in
static_name
:
ratio
=
decay_rate
**
(
n_layers
+
1
)
param
.
optimize_attr
[
"learning_rate"
]
*=
ratio
param
.
optimize_attr
[
'learning_rate'
]
*=
ratio
class
AdamWDL
(
AdamW
):
...
...
@@ -156,16 +162,16 @@ class AdamWDL(AdamW):
multi_precision
=
False
,
layerwise_decay
=
1.0
,
n_layers
=
12
,
set_param_lr_fun
=
None
,
set_param_lr_fun
c
=
None
,
name_dict
=
None
,
name
=
None
):
if
not
isinstance
(
layerwise_decay
,
float
):
raise
TypeError
(
"coeff should be float or Tensor."
)
self
.
layerwise_decay
=
layerwise_decay
self
.
n_layers
=
n_layers
self
.
set_param_lr_fun
=
partial
(
set_param_lr_fun
,
layerwise_decay
,
name_dict
,
n_layers
)
if
set_param_lr_fun
is
not
None
else
set_param_lr_fun
self
.
set_param_lr_fun
c
=
partial
(
set_param_lr_fun
c
,
layerwise_decay
,
name_dict
,
n_layers
)
if
set_param_lr_fun
c
is
not
None
else
set_param_lr_func
super
(
AdamWDL
,
self
).
__init__
(
learning_rate
=
learning_rate
,
parameters
=
parameters
,
...
...
@@ -180,36 +186,35 @@ class AdamWDL(AdamW):
multi_precision
=
multi_precision
)
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
if
self
.
set_param_lr_fun
is
None
:
if
self
.
set_param_lr_fun
c
is
None
:
return
super
(
AdamWDL
,
self
).
_append_optimize_op
(
block
,
param_and_grad
)
self
.
_append_decoupled_weight_decay
(
block
,
param_and_grad
)
prev_lr
=
param_and_grad
[
0
].
optimize_attr
[
"learning_rate"
]
self
.
set_param_lr_fun
(
param_and_grad
[
0
])
self
.
set_param_lr_fun
c
(
param_and_grad
[
0
])
# excute Adam op
res
=
super
(
AdamW
,
self
).
_append_optimize_op
(
block
,
param_and_grad
)
param_and_grad
[
0
].
optimize_attr
[
"learning_rate"
]
=
prev_lr
return
res
def
build_adamw
(
model
,
lr
=
1e-4
,
weight_decay
=
0.05
,
betas
=
(
0.9
,
0.999
),
layer_decay
=
0.65
,
num_layers
=
None
,
filter_bias_and_bn
=
True
,
skip_decay_names
=
None
,
set_param_lr_fun
=
None
):
def
build_adamw
dl
(
model
,
lr
=
1e-4
,
weight_decay
=
0.05
,
betas
=
(
0.9
,
0.999
),
layer_decay
=
0.65
,
num_layers
=
None
,
filter_bias_and_bn
=
True
,
skip_decay_names
=
None
,
set_param_lr_func
=
'layerwise_lr_decay'
):
if
skip_decay_names
and
filter_bias_and_bn
:
decay_dict
=
{
param
.
name
:
not
(
len
(
param
.
shape
)
==
1
or
name
.
endswith
(
".bias"
)
or
param
.
name
:
not
(
len
(
param
.
shape
)
==
1
or
name
.
endswith
(
'.bias'
)
or
any
([
_n
in
name
for
_n
in
skip_decay_names
]))
for
name
,
param
in
model
.
named_parameters
()
}
parameters
=
[
p
for
p
in
model
.
parameters
()]
else
:
...
...
@@ -221,17 +226,15 @@ def build_adamw(model,
if
decay_dict
is
not
None
:
opt_args
[
'apply_decay_param_fun'
]
=
lambda
n
:
decay_dict
[
n
]
if
isinstance
(
set_param_lr_fun
,
str
):
set_param_lr_fun
=
eval
(
set_param_lr_fun
)
opt_args
[
'set_param_lr_fun
'
]
=
set_param_lr_fun
if
isinstance
(
set_param_lr_fun
c
,
str
):
set_param_lr_fun
c
=
eval
(
set_param_lr_func
)
opt_args
[
'set_param_lr_fun
c'
]
=
set_param_lr_func
opt_args
[
'beta1'
]
=
betas
[
0
]
opt_args
[
'beta2'
]
=
betas
[
1
]
opt_args
[
'layerwise_decay'
]
=
layer_decay
name_dict
=
dict
()
for
n
,
p
in
model
.
named_parameters
():
name_dict
[
p
.
name
]
=
n
name_dict
=
{
p
.
name
:
n
for
n
,
p
in
model
.
named_parameters
()}
opt_args
[
'name_dict'
]
=
name_dict
opt_args
[
'n_layers'
]
=
num_layers
...
...
ppdet/optimizer/optimizer.py
浏览文件 @
8693e1d0
...
...
@@ -27,6 +27,8 @@ import paddle.regularizer as regularizer
from
ppdet.core.workspace
import
register
,
serializable
import
copy
from
.adamw
import
AdamWDL
,
build_adamwdl
__all__
=
[
'LearningRate'
,
'OptimizerBuilder'
]
from
ppdet.utils.logger
import
setup_logger
...
...
@@ -317,8 +319,13 @@ class OptimizerBuilder():
optim_args
=
self
.
optimizer
.
copy
()
optim_type
=
optim_args
[
'type'
]
del
optim_args
[
'type'
]
if
optim_type
==
'AdamWDL'
:
return
build_adamwdl
(
model
,
lr
=
learning_rate
,
**
optim_args
)
if
optim_type
!=
'AdamW'
:
optim_args
[
'weight_decay'
]
=
regularization
op
=
getattr
(
optimizer
,
optim_type
)
if
'param_groups'
in
optim_args
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录