image.py 10.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dangqingqing 已提交
14
"""
D
dangqingqing 已提交
15
This file contains some common interfaces for image preprocess.
D
dangqingqing 已提交
16
Many users are confused about the image layout. We introduce
D
dangqingqing 已提交
17
the image layout as follows.
D
dangqingqing 已提交
18 19

- CHW Layout
L
Luo Tao 已提交
20

D
dangqingqing 已提交
21
  - The abbreviations: C=channel, H=Height, W=Width
D
dangqingqing 已提交
22 23 24
  - The default layout of image opened by cv2 or PIL is HWC.
    PaddlePaddle only supports the CHW layout. And CHW is simply
    a transpose of HWC. It must transpose the input image.
D
dangqingqing 已提交
25 26

- Color format: RGB or BGR
L
Luo Tao 已提交
27

D
dangqingqing 已提交
28
  OpenCV use BGR color format. PIL use RGB color format. Both
D
dangqingqing 已提交
29 30
  formats can be used for training. Noted that, the format should
  be keep consistent between the training and inference peroid.
D
dangqingqing 已提交
31
"""
L
Luo Tao 已提交
32 33 34 35 36 37 38
import numpy as np
try:
    import cv2
except ImportError:
    cv2 = None
import os
import tarfile
39
import pickle
L
Luo Tao 已提交
40 41 42 43 44 45

__all__ = [
    "load_image_bytes", "load_image", "resize_short", "to_chw", "center_crop",
    "random_crop", "left_right_flip", "simple_transform", "load_and_transform",
    "batch_images_from_tar"
]
D
dangqingqing 已提交
46 47


48 49 50 51 52 53
def batch_images_from_tar(data_file,
                          dataset_name,
                          img2label,
                          num_per_batch=1024):
    """
    Read images from tar file and batch them into batch file.
L
Luo Tao 已提交
54 55 56 57 58 59

    :param data_file: path of image tar file
    :type data_file: string
    :param dataset_name: 'train','test' or 'valid'
    :type dataset_name: string
    :param img2label: a dic with image file name as key 
60
                    and image's label as value
L
Luo Tao 已提交
61 62 63 64 65
    :type img2label: dic
    :param num_per_batch: image number per batch file
    :type num_per_batch: int
    :return: path of list file containing paths of batch file
    :rtype: string
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    """
    batch_dir = data_file + "_batch"
    out_path = "%s/%s" % (batch_dir, dataset_name)
    meta_file = "%s/%s.txt" % (batch_dir, dataset_name)

    if os.path.exists(out_path):
        return meta_file
    else:
        os.makedirs(out_path)

    tf = tarfile.open(data_file)
    mems = tf.getmembers()
    data = []
    labels = []
    file_id = 0
    for mem in mems:
        if mem.name in img2label:
            data.append(tf.extractfile(mem).read())
            labels.append(img2label[mem.name])
            if len(data) == num_per_batch:
                output = {}
                output['label'] = labels
                output['data'] = data
89
                pickle.dump(
90 91
                    output,
                    open('%s/batch_%d' % (out_path, file_id), 'w'),
92
                    protocol=pickle.HIGHEST_PROTOCOL)
93 94 95 96 97 98 99
                file_id += 1
                data = []
                labels = []
    if len(data) > 0:
        output = {}
        output['label'] = labels
        output['data'] = data
100
        pickle.dump(
101 102
            output,
            open('%s/batch_%d' % (out_path, file_id), 'w'),
103
            protocol=pickle.HIGHEST_PROTOCOL)
104 105 106 107 108 109 110

    with open(meta_file, 'a') as meta:
        for file in os.listdir(out_path):
            meta.write(os.path.abspath("%s/%s" % (out_path, file)) + "\n")
    return meta_file


111 112 113 114 115 116 117
def load_image_bytes(bytes, is_color=True):
    """
    Load an color or gray image from bytes array.

    Example usage:
    
    .. code-block:: python
L
Luo Tao 已提交
118

119
        with open('cat.jpg') as f:
120
            im = load_image_bytes(f.read())
121 122

    :param bytes: the input image bytes array.
L
Luo Tao 已提交
123
    :type bytes: str
124 125 126
    :param is_color: If set is_color True, it will load and
                     return a color image. Otherwise, it will
                     load and return a gray image.
L
Luo Tao 已提交
127
    :type is_color: bool
128 129 130 131 132 133 134
    """
    flag = 1 if is_color else 0
    file_bytes = np.asarray(bytearray(bytes), dtype=np.uint8)
    img = cv2.imdecode(file_bytes, flag)
    return img


D
dangqingqing 已提交
135 136 137 138 139 140 141
def load_image(file, is_color=True):
    """
    Load an color or gray image from the file path.

    Example usage:
    
    .. code-block:: python
L
Luo Tao 已提交
142

D
dangqingqing 已提交
143 144 145 146 147 148 149
        im = load_image('cat.jpg')

    :param file: the input image path.
    :type file: string
    :param is_color: If set is_color True, it will load and
                     return a color image. Otherwise, it will
                     load and return a gray image.
L
Luo Tao 已提交
150
    :type is_color: bool
D
dangqingqing 已提交
151
    """
D
dangqingqing 已提交
152 153 154 155 156 157 158
    # cv2.IMAGE_COLOR for OpenCV3
    # cv2.CV_LOAD_IMAGE_COLOR for older OpenCV Version
    # cv2.IMAGE_GRAYSCALE for OpenCV3
    # cv2.CV_LOAD_IMAGE_GRAYSCALE for older OpenCV Version
    # Here, use constant 1 and 0
    # 1: COLOR, 0: GRAYSCALE
    flag = 1 if is_color else 0
D
dangqingqing 已提交
159 160 161 162 163 164 165 166 167 168 169
    im = cv2.imread(file, flag)
    return im


def resize_short(im, size):
    """ 
    Resize an image so that the length of shorter edge is size.

    Example usage:
    
    .. code-block:: python
L
Luo Tao 已提交
170

D
dangqingqing 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184
        im = load_image('cat.jpg')
        im = resize_short(im, 256)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
    :param size: the shorter edge size of image after resizing.
    :type size: int
    """
    h, w = im.shape[:2]
    h_new, w_new = size, size
    if h > w:
        h_new = size * h / w
    else:
        w_new = size * w / h
185
    im = cv2.resize(im, (h_new, w_new), interpolation=cv2.INTER_CUBIC)
D
dangqingqing 已提交
186 187 188 189 190 191
    return im


def to_chw(im, order=(2, 0, 1)):
    """
    Transpose the input image order. The image layout is HWC format
D
dangqingqing 已提交
192 193
    opened by cv2 or PIL. Transpose the input image to CHW layout
    according the order (2,0,1).
D
dangqingqing 已提交
194 195 196 197

    Example usage:
    
    .. code-block:: python
L
Luo Tao 已提交
198

D
dangqingqing 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        im = load_image('cat.jpg')
        im = resize_short(im, 256)
        im = to_chw(im)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
    :param order: the transposed order.
    :type order: tuple|list 
    """
    assert len(im.shape) == len(order)
    im = im.transpose(order)
    return im


def center_crop(im, size, is_color=True):
    """
    Crop the center of image with size.

    Example usage:
    
    .. code-block:: python
L
Luo Tao 已提交
220

D
dangqingqing 已提交
221 222 223 224
        im = center_crop(im, 224)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
D
dangqingqing 已提交
225
    :param size: the cropping size.
D
dangqingqing 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    :type size: int
    :param is_color: whether the image is color or not.
    :type is_color: bool
    """
    h, w = im.shape[:2]
    h_start = (h - size) / 2
    w_start = (w - size) / 2
    h_end, w_end = h_start + size, w_start + size
    if is_color:
        im = im[h_start:h_end, w_start:w_end, :]
    else:
        im = im[h_start:h_end, w_start:w_end]
    return im


def random_crop(im, size, is_color=True):
    """
    Randomly crop input image with size.

    Example usage:
    
    .. code-block:: python
L
Luo Tao 已提交
248

D
dangqingqing 已提交
249 250 251 252
        im = random_crop(im, 224)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
D
dangqingqing 已提交
253
    :param size: the cropping size.
D
dangqingqing 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    :type size: int
    :param is_color: whether the image is color or not.
    :type is_color: bool
    """
    h, w = im.shape[:2]
    h_start = np.random.randint(0, h - size + 1)
    w_start = np.random.randint(0, w - size + 1)
    h_end, w_end = h_start + size, w_start + size
    if is_color:
        im = im[h_start:h_end, w_start:w_end, :]
    else:
        im = im[h_start:h_end, w_start:w_end]
    return im


Q
qingqing01 已提交
269
def left_right_flip(im, is_color=True):
D
dangqingqing 已提交
270 271 272 273 274 275 276
    """
    Flip an image along the horizontal direction.
    Return the flipped image.

    Example usage:
    
    .. code-block:: python
L
Luo Tao 已提交
277

D
dangqingqing 已提交
278 279
        im = left_right_flip(im)
    
Q
qingqing01 已提交
280
    :param im: input image with HWC layout or HW layout for gray image
D
dangqingqing 已提交
281
    :type im: ndarray
Q
qingqing01 已提交
282
    :param is_color: whether input image is color or not
Q
qingqing01 已提交
283
    :type is_color: bool
D
dangqingqing 已提交
284
    """
Q
qingqing01 已提交
285
    if len(im.shape) == 3 and is_color:
D
dangqingqing 已提交
286 287
        return im[:, ::-1, :]
    else:
Q
qingqing01 已提交
288
        return im[:, ::-1]
D
dangqingqing 已提交
289 290


D
dangqingqing 已提交
291 292 293 294 295 296
def simple_transform(im,
                     resize_size,
                     crop_size,
                     is_train,
                     is_color=True,
                     mean=None):
D
dangqingqing 已提交
297
    """
D
dangqingqing 已提交
298
    Simply data argumentation for training. These operations include
D
dangqingqing 已提交
299 300
    resizing, croping and flipping.

D
dangqingqing 已提交
301 302 303
    Example usage:
    
    .. code-block:: python
L
Luo Tao 已提交
304

D
dangqingqing 已提交
305 306
        im = simple_transform(im, 256, 224, True)

D
dangqingqing 已提交
307 308 309 310 311 312 313 314
    :param im: The input image with HWC layout.
    :type im: ndarray
    :param resize_size: The shorter edge length of the resized image.
    :type resize_size: int
    :param crop_size: The cropping size.
    :type crop_size: int
    :param is_train: Whether it is training or not.
    :type is_train: bool
L
Luo Tao 已提交
315 316 317 318 319
    :param is_color: whether the image is color or not.
    :type is_color: bool
    :param mean: the mean values, which can be element-wise mean values or 
                 mean values per channel.
    :type mean: numpy array | list
D
dangqingqing 已提交
320 321 322
    """
    im = resize_short(im, resize_size)
    if is_train:
Y
yeyupiaoling 已提交
323
        im = random_crop(im, crop_size, is_color=is_color)
D
dangqingqing 已提交
324
        if np.random.randint(2) == 0:
Q
qingqing01 已提交
325
            im = left_right_flip(im, is_color)
D
dangqingqing 已提交
326
    else:
Q
qingqing01 已提交
327
        im = center_crop(im, crop_size, is_color)
Y
yeyupiaoling 已提交
328
        im = center_crop(im, crop_size, is_color=is_color)
D
dangqingqing 已提交
329 330 331 332 333 334 335
    if len(im.shape) == 3:
        im = to_chw(im)

    im = im.astype('float32')
    if mean is not None:
        mean = np.array(mean, dtype=np.float32)
        # mean value, may be one value per channel 
Q
qingqing01 已提交
336
        if mean.ndim == 1 and is_color:
D
dangqingqing 已提交
337
            mean = mean[:, np.newaxis, np.newaxis]
Q
qingqing01 已提交
338 339
        elif mean.ndim == 1:
            mean = mean
D
dangqingqing 已提交
340 341 342 343
        else:
            # elementwise mean
            assert len(mean.shape) == len(im)
        im -= mean
D
dangqingqing 已提交
344 345 346 347 348 349 350 351

    return im


def load_and_transform(filename,
                       resize_size,
                       crop_size,
                       is_train,
D
dangqingqing 已提交
352 353
                       is_color=True,
                       mean=None):
D
dangqingqing 已提交
354 355
    """
    Load image from the input file `filename` and transform image for
D
dangqingqing 已提交
356 357
    data argumentation. Please refer to the `simple_transform` interface
    for the transform operations.
D
dangqingqing 已提交
358

D
dangqingqing 已提交
359 360 361
    Example usage:
    
    .. code-block:: python
L
Luo Tao 已提交
362

D
dangqingqing 已提交
363 364
        im = load_and_transform('cat.jpg', 256, 224, True)

D
dangqingqing 已提交
365 366 367 368 369 370 371 372
    :param filename: The file name of input image.
    :type filename: string
    :param resize_size: The shorter edge length of the resized image.
    :type resize_size: int
    :param crop_size: The cropping size.
    :type crop_size: int
    :param is_train: Whether it is training or not.
    :type is_train: bool
L
Luo Tao 已提交
373 374 375 376 377
    :param is_color: whether the image is color or not.
    :type is_color: bool
    :param mean: the mean values, which can be element-wise mean values or 
                 mean values per channel.
    :type mean: numpy array | list
D
dangqingqing 已提交
378
    """
Q
qingqing01 已提交
379
    im = load_image(filename, is_color)
D
dangqingqing 已提交
380
    im = simple_transform(im, resize_size, crop_size, is_train, is_color, mean)
D
dangqingqing 已提交
381
    return im