object_detector.cc 10.1 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
// for setprecision
#include <iomanip>
Z
zlsh80826 已提交
17
#include <chrono>
Q
qingqing01 已提交
18 19 20 21 22 23 24 25 26 27
#include "include/object_detector.h"


using namespace paddle_infer;

namespace PaddleDetection {

// Load Model and create model predictor
void ObjectDetector::LoadModel(const std::string& model_dir,
                               const int batch_size,
G
Guanghua Yu 已提交
28
                               const std::string& run_mode) {
Q
qingqing01 已提交
29 30 31 32
  paddle_infer::Config config;
  std::string prog_file = model_dir + OS_PATH_SEP + "model.pdmodel";
  std::string params_file = model_dir + OS_PATH_SEP + "model.pdiparams";
  config.SetModel(prog_file, params_file);
G
Guanghua Yu 已提交
33 34
  if (this->use_gpu_) {
    config.EnableUseGpu(200, this->gpu_id_);
Q
qingqing01 已提交
35
    config.SwitchIrOptim(true);
36
    // use tensorrt
Q
qingqing01 已提交
37 38
    if (run_mode != "fluid") {
      auto precision = paddle_infer::Config::Precision::kFloat32;
39 40 41 42
      if (run_mode == "trt_fp32") {
        precision = paddle_infer::Config::Precision::kFloat32;
      }
      else if (run_mode == "trt_fp16") {
Q
qingqing01 已提交
43
        precision = paddle_infer::Config::Precision::kHalf;
44 45 46
      }
      else if (run_mode == "trt_int8") {
        precision = paddle_infer::Config::Precision::kInt8;
Q
qingqing01 已提交
47
      } else {
48
          printf("run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or 'trt_int8'");
Q
qingqing01 已提交
49
      }
50
      // set tensorrt
Q
qingqing01 已提交
51
      config.EnableTensorRtEngine(
52
          1 << 30,
Q
qingqing01 已提交
53
          batch_size,
G
Guanghua Yu 已提交
54
          this->min_subgraph_size_,
Q
qingqing01 已提交
55 56
          precision,
          false,
G
Guanghua Yu 已提交
57
          this->trt_calib_mode_);
58 59

      // set use dynamic shape
G
Guanghua Yu 已提交
60
      if (this->use_dynamic_shape_) {
61
        // set DynamicShsape for image tensor
G
Guanghua Yu 已提交
62 63 64
        const std::vector<int> min_input_shape = {1, 3, this->trt_min_shape_, this->trt_min_shape_};
        const std::vector<int> max_input_shape = {1, 3, this->trt_max_shape_, this->trt_max_shape_};
        const std::vector<int> opt_input_shape = {1, 3, this->trt_opt_shape_, this->trt_opt_shape_};
65 66 67 68 69 70 71 72 73 74 75
        const std::map<std::string, std::vector<int>> map_min_input_shape = {{"image", min_input_shape}};
        const std::map<std::string, std::vector<int>> map_max_input_shape = {{"image", max_input_shape}};
        const std::map<std::string, std::vector<int>> map_opt_input_shape = {{"image", opt_input_shape}};

        config.SetTRTDynamicShapeInfo(map_min_input_shape,
                                      map_max_input_shape,
                                      map_opt_input_shape);
        std::cout << "TensorRT dynamic shape enabled" << std::endl;
      }
    }

Q
qingqing01 已提交
76 77
  } else {
    config.DisableGpu();
G
Guanghua Yu 已提交
78 79 80 81 82 83
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
    }
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
Q
qingqing01 已提交
84 85
  }
  config.SwitchUseFeedFetchOps(false);
G
Guanghua Yu 已提交
86
  config.SwitchIrOptim(true);
Q
qingqing01 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  config.DisableGlogInfo();
  // Memory optimization
  config.EnableMemoryOptim();
  predictor_ = std::move(CreatePredictor(config));
}

// Visualiztion MaskDetector results
cv::Mat VisualizeResult(const cv::Mat& img,
                        const std::vector<ObjectResult>& results,
                        const std::vector<std::string>& lable_list,
                        const std::vector<int>& colormap) {
  cv::Mat vis_img = img.clone();
  for (int i = 0; i < results.size(); ++i) {
    int w = results[i].rect[1] - results[i].rect[0];
    int h = results[i].rect[3] - results[i].rect[2];
    cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[2], w, h);

    // Configure color and text size
    std::ostringstream oss;
    oss << std::setiosflags(std::ios::fixed) << std::setprecision(4);
    oss << lable_list[results[i].class_id] << " ";
    oss << results[i].confidence;
    std::string text = oss.str();
    int c1 = colormap[3 * results[i].class_id + 0];
    int c2 = colormap[3 * results[i].class_id + 1];
    int c3 = colormap[3 * results[i].class_id + 2];
    cv::Scalar roi_color = cv::Scalar(c1, c2, c3);
    int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
    double font_scale = 0.5f;
    float thickness = 0.5;
    cv::Size text_size = cv::getTextSize(text,
                                         font_face,
                                         font_scale,
                                         thickness,
                                         nullptr);
    cv::Point origin;
    origin.x = roi.x;
    origin.y = roi.y;

    // Configure text background
    cv::Rect text_back = cv::Rect(results[i].rect[0],
                                  results[i].rect[2] - text_size.height,
                                  text_size.width,
                                  text_size.height);

    // Draw roi object, text, and background
    cv::rectangle(vis_img, roi, roi_color, 2);
    cv::rectangle(vis_img, text_back, roi_color, -1);
    cv::putText(vis_img,
                text,
                origin,
                font_face,
                font_scale,
                cv::Scalar(255, 255, 255),
                thickness);
  }
  return vis_img;
}

void ObjectDetector::Preprocess(const cv::Mat& ori_im) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = ori_im.clone();
  cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
  preprocessor_.Run(&im, &inputs_);
}

void ObjectDetector::Postprocess(
    const cv::Mat& raw_mat,
    std::vector<ObjectResult>* result) {
  result->clear();
  int rh = 1;
  int rw = 1;
159
  if (config_.arch_ == "Face") {
Q
qingqing01 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    rh = raw_mat.rows;
    rw = raw_mat.cols;
  }

  int total_size = output_data_.size() / 6;
  for (int j = 0; j < total_size; ++j) {
    // Class id
    int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
    // Confidence score
    float score = output_data_[1 + j * 6];
    int xmin = (output_data_[2 + j * 6] * rw);
    int ymin = (output_data_[3 + j * 6] * rh);
    int xmax = (output_data_[4 + j * 6] * rw);
    int ymax = (output_data_[5 + j * 6] * rh);
    int wd = xmax - xmin;
    int hd = ymax - ymin;
    if (score > threshold_ && class_id > -1) {
      ObjectResult result_item;
      result_item.rect = {xmin, xmax, ymin, ymax};
      result_item.class_id = class_id;
      result_item.confidence = score;
      result->push_back(result_item);
    }
  }
}

void ObjectDetector::Predict(const cv::Mat& im,
      const double threshold,
      const int warmup,
      const int repeats,
G
Guanghua Yu 已提交
190 191 192
      std::vector<ObjectResult>* result,
      std::vector<double>* times) {
  auto preprocess_start = std::chrono::steady_clock::now();
Q
qingqing01 已提交
193 194 195 196 197 198 199
  // Preprocess image
  Preprocess(im);
  // Prepare input tensor
  auto input_names = predictor_->GetInputNames();
  for (const auto& tensor_name : input_names) {
    auto in_tensor = predictor_->GetInputHandle(tensor_name);
    if (tensor_name == "image") {
200 201
      int rh = inputs_.in_net_shape_[0];
      int rw = inputs_.in_net_shape_[1];
Q
qingqing01 已提交
202 203 204 205 206 207 208 209 210 211
      in_tensor->Reshape({1, 3, rh, rw});
      in_tensor->CopyFromCpu(inputs_.im_data_.data());
    } else if (tensor_name == "im_shape") {
      in_tensor->Reshape({1, 2});
      in_tensor->CopyFromCpu(inputs_.im_shape_.data());
    } else if (tensor_name == "scale_factor") {
      in_tensor->Reshape({1, 2});
      in_tensor->CopyFromCpu(inputs_.scale_factor_.data());
    }
  }
G
Guanghua Yu 已提交
212
  auto preprocess_end = std::chrono::steady_clock::now();
Q
qingqing01 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
  // Run predictor
  for (int i = 0; i < warmup; i++)
  {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetOutputHandle(output_names[0]);
    std::vector<int> output_shape = out_tensor->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
    }

    if (output_size < 6) {
      std::cerr << "[WARNING] No object detected." << std::endl;
    }
    output_data_.resize(output_size);
    out_tensor->CopyToCpu(output_data_.data()); 
  }

G
Guanghua Yu 已提交
234
  auto inference_start = std::chrono::steady_clock::now();
Q
qingqing01 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  for (int i = 0; i < repeats; i++)
  {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetOutputHandle(output_names[0]);
    std::vector<int> output_shape = out_tensor->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
    }

    if (output_size < 6) {
      std::cerr << "[WARNING] No object detected." << std::endl;
    }
    output_data_.resize(output_size);
    out_tensor->CopyToCpu(output_data_.data()); 
  }
G
Guanghua Yu 已提交
254 255
  auto inference_end = std::chrono::steady_clock::now();
  auto postprocess_start = std::chrono::steady_clock::now();
Q
qingqing01 已提交
256
  // Postprocessing result
G
Guanghua Yu 已提交
257 258 259 260 261 262 263 264 265
  Postprocess(im,  result);
  auto postprocess_end = std::chrono::steady_clock::now();

  std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
  times->push_back(double(preprocess_diff.count() * 1000));
  std::chrono::duration<float> inference_diff = inference_end - inference_start;
  times->push_back(double(inference_diff.count() / repeats * 1000));
  std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
  times->push_back(double(postprocess_diff.count() * 1000));
Q
qingqing01 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
}

std::vector<int> GenerateColorMap(int num_class) {
  auto colormap = std::vector<int>(3 * num_class, 0);
  for (int i = 0; i < num_class; ++i) {
    int j = 0;
    int lab = i;
    while (lab) {
      colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j));
      colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
      colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
      ++j;
      lab >>= 3;
    }
  }
  return colormap;
}

}  // namespace PaddleDetection