im2col.cc 10.4 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hedaoyuan 已提交
15
#include "paddle/operators/math/im2col.h"
H
hedaoyuan 已提交
16 17

namespace paddle {
18
namespace operators {
19
namespace math {
H
hedaoyuan 已提交
20 21

/*
H
hedaoyuan 已提交
22 23 24
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
25 26
 */
template <class T>
H
hedaoyuan 已提交
27 28
class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
                    platform::CPUPlace, T> {
H
hedaoyuan 已提交
29
 public:
H
hedaoyuan 已提交
30 31
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& im, framework::Tensor& col,
H
hedaoyuan 已提交
32
                  int stride_height, int stride_width, int padding_height,
H
hedaoyuan 已提交
33
                  int padding_width) {
H
hedaoyuan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);

    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
    int output_height = col.dims()[3];
    int output_width = col.dims()[4];
    int channels_col = input_channels * filter_height * filter_width;

    const T* im_data = im.data<T>();
    T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / filter_width / filter_height;
      for (int h = 0; h < output_height; ++h) {
        for (int w = 0; w < output_width; ++w) {
          int im_row_idx = h * stride_height + h_offset;
          int im_col_idx = w * stride_width + w_offset;
          if ((im_row_idx - padding_height) < 0 ||
              (im_row_idx - padding_height) >= input_height ||
              (im_col_idx - padding_width) < 0 ||
              (im_col_idx - padding_width) >= input_width) {
            col_data[(c * output_height + h) * output_width + w] = T(0);
H
hedaoyuan 已提交
62
          } else {
H
hedaoyuan 已提交
63 64 65 66
            im_row_idx += c_im * input_height - padding_height;
            im_col_idx -= padding_width;
            col_data[(c * output_height + h) * output_width + w] =
                im_data[im_row_idx * input_width + im_col_idx];
H
hedaoyuan 已提交
67 68 69 70 71 72 73 74
          }
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
75 76 77
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
78 79
 */
template <class T>
H
hedaoyuan 已提交
80 81
class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
                    platform::CPUPlace, T> {
H
hedaoyuan 已提交
82
 public:
H
hedaoyuan 已提交
83 84 85
  void operator()(const platform::DeviceContext& context, framework::Tensor& im,
                  const framework::Tensor& col, int stride_height,
                  int stride_width, int padding_height, int padding_width) {
H
hedaoyuan 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
    int output_height = col.dims()[3];
    int output_width = col.dims()[4];
    int channels_col = input_channels * filter_height * filter_width;

    T* im_data = im.data<T>();
    const T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / filter_width / filter_height;
      for (int h = 0; h < output_height; ++h) {
        for (int w = 0; w < output_width; ++w) {
          int im_row_idx = h * stride_height + h_offset;
          int im_col_idx = w * stride_width + w_offset;
          if ((im_row_idx - padding_height) >= 0 &&
              (im_row_idx - padding_height) < input_height &&
              (im_col_idx - padding_width) >= 0 &&
              (im_col_idx - padding_width) < input_width) {
            im_row_idx += c_im * input_height - padding_height;
            im_col_idx -= padding_width;
            im_data[im_row_idx * input_width + im_col_idx] +=
                col_data[(c * output_height + h) * output_width + w];
H
hedaoyuan 已提交
116 117 118 119 120 121 122
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
123 124 125 126 127 128 129 130
template class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
                             platform::CPUPlace, float>;
template class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
                             platform::CPUPlace, double>;
template class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
                             platform::CPUPlace, float>;
template class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
                             platform::CPUPlace, double>;
H
hedaoyuan 已提交
131 132

/*
H
hedaoyuan 已提交
133 134 135
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
136 137
 */
template <class T>
H
hedaoyuan 已提交
138 139
class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
                    platform::CPUPlace, T> {
H
hedaoyuan 已提交
140
 public:
H
hedaoyuan 已提交
141 142
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& im, framework::Tensor& col,
H
hedaoyuan 已提交
143
                  int stride_height, int stride_width, int padding_height,
H
hedaoyuan 已提交
144
                  int padding_width) {
H
hedaoyuan 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
    int output_height = col.dims()[0];
    int output_width = col.dims()[1];

    const T* im_data = im.data<T>();
    T* col_data = col.data<T>();

    for (int col_row_idx = 0; col_row_idx < output_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < output_width; ++col_col_idx) {
        for (int channel = 0; channel < input_channels; ++channel) {
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_row_offset =
                  col_row_idx * stride_height + filter_row_idx - padding_height;
              int im_col_offset =
                  col_col_idx * stride_width + filter_col_idx - padding_width;
              int col_offset = (((col_row_idx * output_width + col_col_idx) *
                                     input_channels +
                                 channel) *
                                    filter_height +
                                filter_row_idx) *
                                   filter_width +
                               filter_col_idx;
              if (im_row_offset < 0 || im_row_offset >= input_height ||
                  im_col_offset < 0 || im_col_offset >= input_width) {
                col_data[col_offset] = T(0);
H
hedaoyuan 已提交
179
              } else {
H
hedaoyuan 已提交
180 181 182 183
                int im_offset =
                    (channel * input_height + im_row_offset) * input_width +
                    im_col_offset;
                col_data[col_offset] = im_data[im_offset];
H
hedaoyuan 已提交
184 185 186 187 188 189 190 191 192 193
              }
            }
          }
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
194 195 196
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
197 198
 */
template <class T>
H
hedaoyuan 已提交
199 200
class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
                    platform::CPUPlace, T> {
H
hedaoyuan 已提交
201
 public:
H
hedaoyuan 已提交
202 203 204
  void operator()(const platform::DeviceContext& context, framework::Tensor& im,
                  const framework::Tensor& col, int stride_height,
                  int stride_width, int padding_height, int padding_width) {
H
hedaoyuan 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
    int output_height = col.dims()[0];
    int output_width = col.dims()[1];

    T* im_data = im.data<T>();
    const T* col_data = col.data<T>();

    for (int col_row_idx = 0; col_row_idx < output_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < output_width; ++col_col_idx) {
        for (int channel = 0; channel < input_channels; ++channel) {
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_row_offset =
                  col_row_idx * stride_height + filter_row_idx - padding_height;
              int im_col_offset =
                  col_col_idx * stride_width + filter_col_idx - padding_width;
              int col_offset = (((col_row_idx * output_width + col_col_idx) *
                                     input_channels +
                                 channel) *
                                    filter_height +
                                filter_row_idx) *
                                   filter_width +
                               filter_col_idx;
              if (im_row_offset >= 0 && im_row_offset < input_height &&
                  im_col_offset >= 0 && im_col_offset < input_width) {
                int im_offset =
                    (channel * input_height + im_row_offset) * input_width +
                    im_col_offset;
                im_data[im_offset] += col_data[col_offset];
H
hedaoyuan 已提交
242 243 244 245 246 247 248 249 250
              }
            }
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
251 252 253 254 255 256 257 258
template class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
                             platform::CPUPlace, float>;
template class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
                             platform::CPUPlace, double>;
template class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
                             platform::CPUPlace, float>;
template class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
                             platform::CPUPlace, double>;
H
hedaoyuan 已提交
259

260
}  // namespace math
261
}  // namespace operators
H
hedaoyuan 已提交
262
}  // namespace paddle