im2col.cc 9.5 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hedaoyuan 已提交
15
#include "paddle/operators/math/im2col.h"
H
hedaoyuan 已提交
16 17

namespace paddle {
18
namespace math {
H
hedaoyuan 已提交
19 20

/*
H
hedaoyuan 已提交
21 22 23
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
24 25
 */
template <class T>
H
hedaoyuan 已提交
26
class Im2ColFunctor<kCFO, platform::CPUPlace, T> {
H
hedaoyuan 已提交
27
 public:
H
hedaoyuan 已提交
28 29
  void operator()(const framework::Tensor& im, framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
30
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);

    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
    int output_height = col.dims()[3];
    int output_width = col.dims()[4];
    int channels_col = input_channels * filter_height * filter_width;

    const T* im_data = im.data<T>();
    T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / filter_width / filter_height;
      for (int h = 0; h < output_height; ++h) {
        for (int w = 0; w < output_width; ++w) {
          int im_row_idx = h * stride_height + h_offset;
          int im_col_idx = w * stride_width + w_offset;
          if ((im_row_idx - padding_height) < 0 ||
              (im_row_idx - padding_height) >= input_height ||
              (im_col_idx - padding_width) < 0 ||
              (im_col_idx - padding_width) >= input_width) {
            col_data[(c * output_height + h) * output_width + w] = T(0);
H
hedaoyuan 已提交
59
          } else {
H
hedaoyuan 已提交
60 61 62 63
            im_row_idx += c_im * input_height - padding_height;
            im_col_idx -= padding_width;
            col_data[(c * output_height + h) * output_width + w] =
                im_data[im_row_idx * input_width + im_col_idx];
H
hedaoyuan 已提交
64 65 66 67 68 69 70 71
          }
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
72 73 74
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
75 76
 */
template <class T>
H
hedaoyuan 已提交
77
class Col2ImFunctor<kCFO, platform::CPUPlace, T> {
H
hedaoyuan 已提交
78
 public:
H
hedaoyuan 已提交
79 80
  void operator()(framework::Tensor& im, const framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
81
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
    int output_height = col.dims()[3];
    int output_width = col.dims()[4];
    int channels_col = input_channels * filter_height * filter_width;

    T* im_data = im.data<T>();
    const T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / filter_width / filter_height;
      for (int h = 0; h < output_height; ++h) {
        for (int w = 0; w < output_width; ++w) {
          int im_row_idx = h * stride_height + h_offset;
          int im_col_idx = w * stride_width + w_offset;
          if ((im_row_idx - padding_height) >= 0 &&
              (im_row_idx - padding_height) < input_height &&
              (im_col_idx - padding_width) >= 0 &&
              (im_col_idx - padding_width) < input_width) {
            im_row_idx += c_im * input_height - padding_height;
            im_col_idx -= padding_width;
            im_data[im_row_idx * input_width + im_col_idx] +=
                col_data[(c * output_height + h) * output_width + w];
H
hedaoyuan 已提交
112 113 114 115 116 117 118
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
119 120 121 122
template class Im2ColFunctor<kCFO, platform::CPUPlace, float>;
template class Im2ColFunctor<kCFO, platform::CPUPlace, double>;
template class Col2ImFunctor<kCFO, platform::CPUPlace, float>;
template class Col2ImFunctor<kCFO, platform::CPUPlace, double>;
H
hedaoyuan 已提交
123 124

/*
H
hedaoyuan 已提交
125 126 127
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
128 129
 */
template <class T>
H
hedaoyuan 已提交
130
class Im2ColFunctor<kOCF, platform::CPUPlace, T> {
H
hedaoyuan 已提交
131
 public:
H
hedaoyuan 已提交
132 133
  void operator()(const framework::Tensor& im, framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
134
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
    int output_height = col.dims()[0];
    int output_width = col.dims()[1];

    const T* im_data = im.data<T>();
    T* col_data = col.data<T>();

    for (int col_row_idx = 0; col_row_idx < output_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < output_width; ++col_col_idx) {
        for (int channel = 0; channel < input_channels; ++channel) {
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_row_offset =
                  col_row_idx * stride_height + filter_row_idx - padding_height;
              int im_col_offset =
                  col_col_idx * stride_width + filter_col_idx - padding_width;
              int col_offset = (((col_row_idx * output_width + col_col_idx) *
                                     input_channels +
                                 channel) *
                                    filter_height +
                                filter_row_idx) *
                                   filter_width +
                               filter_col_idx;
              if (im_row_offset < 0 || im_row_offset >= input_height ||
                  im_col_offset < 0 || im_col_offset >= input_width) {
                col_data[col_offset] = T(0);
H
hedaoyuan 已提交
169
              } else {
H
hedaoyuan 已提交
170 171 172 173
                int im_offset =
                    (channel * input_height + im_row_offset) * input_width +
                    im_col_offset;
                col_data[col_offset] = im_data[im_offset];
H
hedaoyuan 已提交
174 175 176 177 178 179 180 181 182 183
              }
            }
          }
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
184 185 186
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
187 188
 */
template <class T>
H
hedaoyuan 已提交
189
class Col2ImFunctor<kOCF, platform::CPUPlace, T> {
H
hedaoyuan 已提交
190
 public:
H
hedaoyuan 已提交
191 192
  void operator()(framework::Tensor& im, const framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
193
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
    int output_height = col.dims()[0];
    int output_width = col.dims()[1];

    T* im_data = im.data<T>();
    const T* col_data = col.data<T>();

    for (int col_row_idx = 0; col_row_idx < output_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < output_width; ++col_col_idx) {
        for (int channel = 0; channel < input_channels; ++channel) {
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_row_offset =
                  col_row_idx * stride_height + filter_row_idx - padding_height;
              int im_col_offset =
                  col_col_idx * stride_width + filter_col_idx - padding_width;
              int col_offset = (((col_row_idx * output_width + col_col_idx) *
                                     input_channels +
                                 channel) *
                                    filter_height +
                                filter_row_idx) *
                                   filter_width +
                               filter_col_idx;
              if (im_row_offset >= 0 && im_row_offset < input_height &&
                  im_col_offset >= 0 && im_col_offset < input_width) {
                int im_offset =
                    (channel * input_height + im_row_offset) * input_width +
                    im_col_offset;
                im_data[im_offset] += col_data[col_offset];
H
hedaoyuan 已提交
231 232 233 234 235 236 237 238 239
              }
            }
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
240 241 242 243
template class Im2ColFunctor<kOCF, platform::CPUPlace, float>;
template class Im2ColFunctor<kOCF, platform::CPUPlace, double>;
template class Col2ImFunctor<kOCF, platform::CPUPlace, float>;
template class Col2ImFunctor<kOCF, platform::CPUPlace, double>;
H
hedaoyuan 已提交
244

245
}  // namespace math
H
hedaoyuan 已提交
246
}  // namespace paddle