INSTALL.md 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
English | [简体中文](INSTALL_cn.md)

# Installation


This document covers how to install PaddleDetection and its dependencies
(including PaddlePaddle), together with COCO and Pascal VOC dataset.

For general information about PaddleDetection, please see [README.md](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/).

## Requirements:

- PaddlePaddle 2.0.1
- OS 64 bit
- Python 3(3.5.1+/3.6/3.7),64 bit
- pip/pip3(9.0.1+), 64 bit
- CUDA >= 9.0
- cuDNN >= 7.6


21 22 23 24 25 26 27 28 29 30 31
Dependency of PaddleDetection and PaddlePaddle:

| PaddleDetection version | PaddlePaddle version  |    tips    |
| :----------------: | :---------------: | :-------: |
|    release/2.0       |       >= 2.0.1    |     Dygraph mode is set as default    |
|    release/2.0-rc    |       >= 2.0.1    |     --    |
|    release/0.5       |       >= 1.8.4    |  Cascade R-CNN and SOLOv2 depends on 2.0.0.rc |
|    release/0.4       |       >= 1.8.4    |  PP-YOLO depends on 1.8.4 |
|    release/0.3       |        >=1.7      |     --    |


32 33
## Instruction

K
Kaipeng Deng 已提交
34
### 1. Install PaddlePaddle
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

```
# CUDA9.0
python -m pip install paddlepaddle-gpu==2.0.1.post90 -i https://mirror.baidu.com/pypi/simple

# CUDA10.1
python -m pip install paddlepaddle-gpu==2.0.1.post101 -f https://mirror.baidu.com/pypi/simple

# CPU
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
```

For more installation methods such as conda or compile with source code, please refer to the [installation document](https://www.paddlepaddle.org.cn/documentation/docs/en/install/index_en.html)

Please make sure that your PaddlePaddle is installed successfully and the version is not lower than the required version. Use the following command to verify.

```
# check
>>> import paddle
>>> paddle.utils.run_check()

# confirm the paddle's version
python -c "import paddle; print(paddle.__version__)"
```

**Note**

1.  If you want to use PaddleDetection on multi-GPU, please install NCCL at first.


K
Kaipeng Deng 已提交
65 66 67 68 69 70 71 72 73 74
### 2. Install PaddleDetection

PaddleDetection can be installed in the following two ways:

#### 2.1 Install via pip

**Note:** Installing via pip only supports Python3

```
# install paddledet via pip
75
pip install paddledet==2.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
K
Kaipeng Deng 已提交
76 77 78 79 80

# Download and use the configuration files and code examples in the source code
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection
```
81

K
Kaipeng Deng 已提交
82
#### 2.2 Compile and install from Source code
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

```
# Clone PaddleDetection repository
cd <path/to/clone/PaddleDetection>
git clone https://github.com/PaddlePaddle/PaddleDetection.git

# Install other dependencies
pip install -r requirements.txt

# Install PaddleDetection
cd PaddleDetection
python setup.py install
```

**Note**

1. Because the origin version of cocoapi does not support windows, another version is used which only supports Python3:

    ```pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI```

After installation, make sure the tests pass:

```shell
python ppdet/modeling/tests/test_architectures.py
```

If the tests are passed, the following information will be prompted:

```
..........
----------------------------------------------------------------------
Ran 12 tests in 2.480s
OK (skipped=2)
```

## Inference demo

**Congratulation!** Now you have installed PaddleDetection successfully and try our inference demo:

```
# Predict an image by GPU
export CUDA_VISIBLE_DEVICES=0
python tools/infer.py -c configs/ppyolo/ppyolo.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_img=demo/000000014439.jpg
```

An image of the same name with the predicted result will be generated under the `output` folder.
The result is as shown below:

![](../images/000000014439.jpg)