keypoint_coco.py 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import os
import cv2
import numpy as np
18
import json
19
import copy
20 21
import pycocotools
from pycocotools.coco import COCO
22 23 24 25 26 27
from .dataset import DetDataset
from ppdet.core.workspace import register, serializable


@serializable
class KeypointBottomUpBaseDataset(DetDataset):
Z
zhiboniu 已提交
28 29
    """Base class for bottom-up datasets. Adapted from
        https://github.com/open-mmlab/mmpose
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

    All datasets should subclass it.
    All subclasses should overwrite:
        Methods:`_get_imganno`

    Args:
        dataset_dir (str): Root path to the dataset.
        anno_path (str): Relative path to the annotation file.
        image_dir (str): Path to a directory where images are held.
            Default: None.
        num_joints (int): keypoint numbers
        transform (composed(operators)): A sequence of data transforms.
        shard (list): [rank, worldsize], the distributed env params
        test_mode (bool): Store True when building test or
            validation dataset. Default: False.
    """

    def __init__(self,
                 dataset_dir,
                 image_dir,
                 anno_path,
                 num_joints,
                 transform=[],
                 shard=[0, 1],
                 test_mode=False):
        super().__init__(dataset_dir, image_dir, anno_path)
        self.image_info = {}
        self.ann_info = {}

        self.img_prefix = os.path.join(dataset_dir, image_dir)
        self.transform = transform
        self.test_mode = test_mode

        self.ann_info['num_joints'] = num_joints
        self.img_ids = []

Z
zhiboniu 已提交
66 67 68
    def parse_dataset(self):
        pass

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    def __len__(self):
        """Get dataset length."""
        return len(self.img_ids)

    def _get_imganno(self, idx):
        """Get anno for a single image."""
        raise NotImplementedError

    def __getitem__(self, idx):
        """Prepare image for training given the index."""
        records = copy.deepcopy(self._get_imganno(idx))
        records['image'] = cv2.imread(records['image_file'])
        records['image'] = cv2.cvtColor(records['image'], cv2.COLOR_BGR2RGB)
        records['mask'] = (records['mask'] + 0).astype('uint8')
        records = self.transform(records)
        return records

    def parse_dataset(self):
        return


@register
@serializable
class KeypointBottomUpCocoDataset(KeypointBottomUpBaseDataset):
Z
zhiboniu 已提交
93 94
    """COCO dataset for bottom-up pose estimation. Adapted from
        https://github.com/open-mmlab/mmpose
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

    The dataset loads raw features and apply specified transforms
    to return a dict containing the image tensors and other information.

    COCO keypoint indexes::

        0: 'nose',
        1: 'left_eye',
        2: 'right_eye',
        3: 'left_ear',
        4: 'right_ear',
        5: 'left_shoulder',
        6: 'right_shoulder',
        7: 'left_elbow',
        8: 'right_elbow',
        9: 'left_wrist',
        10: 'right_wrist',
        11: 'left_hip',
        12: 'right_hip',
        13: 'left_knee',
        14: 'right_knee',
        15: 'left_ankle',
        16: 'right_ankle'

    Args:
        dataset_dir (str): Root path to the dataset.
        anno_path (str): Relative path to the annotation file.
        image_dir (str): Path to a directory where images are held.
            Default: None.
        num_joints (int): keypoint numbers
        transform (composed(operators)): A sequence of data transforms.
        shard (list): [rank, worldsize], the distributed env params
        test_mode (bool): Store True when building test or
            validation dataset. Default: False.
    """

    def __init__(self,
                 dataset_dir,
                 image_dir,
                 anno_path,
                 num_joints,
                 transform=[],
                 shard=[0, 1],
                 test_mode=False):
        super().__init__(dataset_dir, image_dir, anno_path, num_joints,
                         transform, shard, test_mode)

Z
zhiboniu 已提交
142 143 144 145 146 147
        self.ann_file = os.path.join(dataset_dir, anno_path)
        self.shard = shard
        self.test_mode = test_mode

    def parse_dataset(self):
        self.coco = COCO(self.ann_file)
148 149

        self.img_ids = self.coco.getImgIds()
Z
zhiboniu 已提交
150
        if not self.test_mode:
151 152 153 154 155
            self.img_ids = [
                img_id for img_id in self.img_ids
                if len(self.coco.getAnnIds(
                    imgIds=img_id, iscrowd=None)) > 0
            ]
Z
zhiboniu 已提交
156 157 158
        blocknum = int(len(self.img_ids) / self.shard[1])
        self.img_ids = self.img_ids[(blocknum * self.shard[0]):(blocknum * (
            self.shard[0] + 1))]
159 160 161 162
        self.num_images = len(self.img_ids)
        self.id2name, self.name2id = self._get_mapping_id_name(self.coco.imgs)
        self.dataset_name = 'coco'

163 164
        cat_ids = self.coco.getCatIds()
        self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
Z
zhiboniu 已提交
165
        print('=> num_images: {}'.format(self.num_images))
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

    @staticmethod
    def _get_mapping_id_name(imgs):
        """
        Args:
            imgs (dict): dict of image info.

        Returns:
            tuple: Image name & id mapping dicts.

            - id2name (dict): Mapping image id to name.
            - name2id (dict): Mapping image name to id.
        """
        id2name = {}
        name2id = {}
        for image_id, image in imgs.items():
            file_name = image['file_name']
            id2name[image_id] = file_name
            name2id[file_name] = image_id

        return id2name, name2id

    def _get_imganno(self, idx):
        """Get anno for a single image.

        Args:
            idx (int): image idx

        Returns:
            dict: info for model training
        """
        coco = self.coco
        img_id = self.img_ids[idx]
        ann_ids = coco.getAnnIds(imgIds=img_id)
        anno = coco.loadAnns(ann_ids)

        mask = self._get_mask(anno, idx)
        anno = [
            obj for obj in anno
            if obj['iscrowd'] == 0 or obj['num_keypoints'] > 0
        ]

        joints, orgsize = self._get_joints(anno, idx)

        db_rec = {}
        db_rec['im_id'] = img_id
        db_rec['image_file'] = os.path.join(self.img_prefix,
                                            self.id2name[img_id])
        db_rec['mask'] = mask
        db_rec['joints'] = joints
        db_rec['im_shape'] = orgsize

        return db_rec

    def _get_joints(self, anno, idx):
        """Get joints for all people in an image."""
        num_people = len(anno)

        joints = np.zeros(
            (num_people, self.ann_info['num_joints'], 3), dtype=np.float32)

        for i, obj in enumerate(anno):
            joints[i, :self.ann_info['num_joints'], :3] = \
                np.array(obj['keypoints']).reshape([-1, 3])

        img_info = self.coco.loadImgs(self.img_ids[idx])[0]
        joints[..., 0] /= img_info['width']
        joints[..., 1] /= img_info['height']
        orgsize = np.array([img_info['height'], img_info['width']])

        return joints, orgsize

    def _get_mask(self, anno, idx):
        """Get ignore masks to mask out losses."""
        coco = self.coco
        img_info = coco.loadImgs(self.img_ids[idx])[0]

        m = np.zeros((img_info['height'], img_info['width']), dtype=np.float32)

        for obj in anno:
            if 'segmentation' in obj:
                if obj['iscrowd']:
248
                    rle = pycocotools.mask.frPyObjects(obj['segmentation'],
249 250
                                                       img_info['height'],
                                                       img_info['width'])
251
                    m += pycocotools.mask.decode(rle)
252
                elif obj['num_keypoints'] == 0:
253
                    rles = pycocotools.mask.frPyObjects(obj['segmentation'],
254 255 256
                                                        img_info['height'],
                                                        img_info['width'])
                    for rle in rles:
257
                        m += pycocotools.mask.decode(rle)
258 259 260 261 262 263 264

        return m < 0.5


@register
@serializable
class KeypointBottomUpCrowdPoseDataset(KeypointBottomUpCocoDataset):
Z
zhiboniu 已提交
265 266
    """CrowdPose dataset for bottom-up pose estimation. Adapted from
        https://github.com/open-mmlab/mmpose
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

    The dataset loads raw features and apply specified transforms
    to return a dict containing the image tensors and other information.

    CrowdPose keypoint indexes::

        0: 'left_shoulder',
        1: 'right_shoulder',
        2: 'left_elbow',
        3: 'right_elbow',
        4: 'left_wrist',
        5: 'right_wrist',
        6: 'left_hip',
        7: 'right_hip',
        8: 'left_knee',
        9: 'right_knee',
        10: 'left_ankle',
        11: 'right_ankle',
        12: 'top_head',
        13: 'neck'

    Args:
        dataset_dir (str): Root path to the dataset.
        anno_path (str): Relative path to the annotation file.
        image_dir (str): Path to a directory where images are held.
            Default: None.
        num_joints (int): keypoint numbers
        transform (composed(operators)): A sequence of data transforms.
        shard (list): [rank, worldsize], the distributed env params
        test_mode (bool): Store True when building test or
            validation dataset. Default: False.
    """

    def __init__(self,
                 dataset_dir,
                 image_dir,
                 anno_path,
                 num_joints,
                 transform=[],
                 shard=[0, 1],
                 test_mode=False):
        super().__init__(dataset_dir, image_dir, anno_path, num_joints,
                         transform, shard, test_mode)

Z
zhiboniu 已提交
311 312 313
        self.ann_file = os.path.join(dataset_dir, anno_path)
        self.shard = shard
        self.test_mode = test_mode
314

Z
zhiboniu 已提交
315 316
    def parse_dataset(self):
        self.coco = COCO(self.ann_file)
317 318

        self.img_ids = self.coco.getImgIds()
Z
zhiboniu 已提交
319
        if not self.test_mode:
320 321 322 323 324
            self.img_ids = [
                img_id for img_id in self.img_ids
                if len(self.coco.getAnnIds(
                    imgIds=img_id, iscrowd=None)) > 0
            ]
Z
zhiboniu 已提交
325 326 327
        blocknum = int(len(self.img_ids) / self.shard[1])
        self.img_ids = self.img_ids[(blocknum * self.shard[0]):(blocknum * (
            self.shard[0] + 1))]
328 329 330 331
        self.num_images = len(self.img_ids)
        self.id2name, self.name2id = self._get_mapping_id_name(self.coco.imgs)

        self.dataset_name = 'crowdpose'
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
        print('=> num_images: {}'.format(self.num_images))


@serializable
class KeypointTopDownBaseDataset(DetDataset):
    """Base class for top_down datasets.

    All datasets should subclass it.
    All subclasses should overwrite:
        Methods:`_get_db`

    Args:
        dataset_dir (str): Root path to the dataset.
        image_dir (str): Path to a directory where images are held.
        anno_path (str): Relative path to the annotation file.
        num_joints (int): keypoint numbers
        transform (composed(operators)): A sequence of data transforms.
    """

    def __init__(self,
                 dataset_dir,
                 image_dir,
                 anno_path,
                 num_joints,
                 transform=[]):
        super().__init__(dataset_dir, image_dir, anno_path)
        self.image_info = {}
        self.ann_info = {}

        self.img_prefix = os.path.join(dataset_dir, image_dir)
        self.transform = transform

        self.ann_info['num_joints'] = num_joints
        self.db = []

    def __len__(self):
        """Get dataset length."""
        return len(self.db)

    def _get_db(self):
        """Get a sample"""
        raise NotImplementedError

    def __getitem__(self, idx):
        """Prepare sample for training given the index."""
        records = copy.deepcopy(self.db[idx])
        records['image'] = cv2.imread(records['image_file'], cv2.IMREAD_COLOR |
                                      cv2.IMREAD_IGNORE_ORIENTATION)
        records['image'] = cv2.cvtColor(records['image'], cv2.COLOR_BGR2RGB)
        records['score'] = records['score'] if 'score' in records else 1
        records = self.transform(records)
        # print('records', records)
        return records


@register
@serializable
class KeypointTopDownCocoDataset(KeypointTopDownBaseDataset):
Z
zhiboniu 已提交
390 391 392
    """COCO dataset for top-down pose estimation. Adapted from
        https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
        Copyright (c) Microsoft, under the MIT License.
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

    The dataset loads raw features and apply specified transforms
    to return a dict containing the image tensors and other information.

    COCO keypoint indexes:

        0: 'nose',
        1: 'left_eye',
        2: 'right_eye',
        3: 'left_ear',
        4: 'right_ear',
        5: 'left_shoulder',
        6: 'right_shoulder',
        7: 'left_elbow',
        8: 'right_elbow',
        9: 'left_wrist',
        10: 'right_wrist',
        11: 'left_hip',
        12: 'right_hip',
        13: 'left_knee',
        14: 'right_knee',
        15: 'left_ankle',
        16: 'right_ankle'

    Args:
        dataset_dir (str): Root path to the dataset.
        image_dir (str): Path to a directory where images are held.
        anno_path (str): Relative path to the annotation file.
        num_joints (int): Keypoint numbers
        trainsize (list):[w, h] Image target size
        transform (composed(operators)): A sequence of data transforms.
        bbox_file (str): Path to a detection bbox file
            Default: None.
        use_gt_bbox (bool): Whether to use ground truth bbox
            Default: True.
        pixel_std (int): The pixel std of the scale
            Default: 200.
        image_thre (float): The threshold to filter the detection box
            Default: 0.0.
    """

    def __init__(self,
                 dataset_dir,
                 image_dir,
                 anno_path,
                 num_joints,
                 trainsize,
                 transform=[],
                 bbox_file=None,
                 use_gt_bbox=True,
                 pixel_std=200,
                 image_thre=0.0):
        super().__init__(dataset_dir, image_dir, anno_path, num_joints,
                         transform)

        self.bbox_file = bbox_file
        self.use_gt_bbox = use_gt_bbox
        self.trainsize = trainsize
        self.pixel_std = pixel_std
        self.image_thre = image_thre
        self.dataset_name = 'coco'

    def parse_dataset(self):
        if self.use_gt_bbox:
            self.db = self._load_coco_keypoint_annotations()
        else:
            self.db = self._load_coco_person_detection_results()

    def _load_coco_keypoint_annotations(self):
        coco = COCO(self.get_anno())
        img_ids = coco.getImgIds()
        gt_db = []
        for index in img_ids:
            im_ann = coco.loadImgs(index)[0]
            width = im_ann['width']
            height = im_ann['height']
            file_name = im_ann['file_name']
            im_id = int(im_ann["id"])

            annIds = coco.getAnnIds(imgIds=index, iscrowd=False)
            objs = coco.loadAnns(annIds)

            valid_objs = []
            for obj in objs:
                x, y, w, h = obj['bbox']
                x1 = np.max((0, x))
                y1 = np.max((0, y))
                x2 = np.min((width - 1, x1 + np.max((0, w - 1))))
                y2 = np.min((height - 1, y1 + np.max((0, h - 1))))
                if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
                    obj['clean_bbox'] = [x1, y1, x2 - x1, y2 - y1]
                    valid_objs.append(obj)
            objs = valid_objs

            rec = []
            for obj in objs:
                if max(obj['keypoints']) == 0:
                    continue

                joints = np.zeros(
                    (self.ann_info['num_joints'], 3), dtype=np.float)
                joints_vis = np.zeros(
                    (self.ann_info['num_joints'], 3), dtype=np.float)
                for ipt in range(self.ann_info['num_joints']):
                    joints[ipt, 0] = obj['keypoints'][ipt * 3 + 0]
                    joints[ipt, 1] = obj['keypoints'][ipt * 3 + 1]
                    joints[ipt, 2] = 0
                    t_vis = obj['keypoints'][ipt * 3 + 2]
                    if t_vis > 1:
                        t_vis = 1
                    joints_vis[ipt, 0] = t_vis
                    joints_vis[ipt, 1] = t_vis
                    joints_vis[ipt, 2] = 0

                center, scale = self._box2cs(obj['clean_bbox'][:4])
                rec.append({
                    'image_file': os.path.join(self.img_prefix, file_name),
                    'center': center,
                    'scale': scale,
                    'joints': joints,
                    'joints_vis': joints_vis,
                    'im_id': im_id,
                })
            gt_db.extend(rec)

        return gt_db

    def _box2cs(self, box):
        x, y, w, h = box[:4]
        center = np.zeros((2), dtype=np.float32)
        center[0] = x + w * 0.5
        center[1] = y + h * 0.5
        aspect_ratio = self.trainsize[0] * 1.0 / self.trainsize[1]

        if w > aspect_ratio * h:
            h = w * 1.0 / aspect_ratio
        elif w < aspect_ratio * h:
            w = h * aspect_ratio
        scale = np.array(
            [w * 1.0 / self.pixel_std, h * 1.0 / self.pixel_std],
            dtype=np.float32)
        if center[0] != -1:
            scale = scale * 1.25

        return center, scale

    def _load_coco_person_detection_results(self):
        all_boxes = None
        bbox_file_path = os.path.join(self.dataset_dir, self.bbox_file)
        with open(bbox_file_path, 'r') as f:
            all_boxes = json.load(f)

        if not all_boxes:
            print('=> Load %s fail!' % bbox_file_path)
            return None

        kpt_db = []
        for n_img in range(0, len(all_boxes)):
            det_res = all_boxes[n_img]
            if det_res['category_id'] != 1:
                continue
            file_name = det_res[
                'filename'] if 'filename' in det_res else '%012d.jpg' % det_res[
                    'image_id']
            img_name = os.path.join(self.img_prefix, file_name)
            box = det_res['bbox']
            score = det_res['score']
            im_id = int(det_res['image_id'])

            if score < self.image_thre:
                continue

            center, scale = self._box2cs(box)
            joints = np.zeros((self.ann_info['num_joints'], 3), dtype=np.float)
            joints_vis = np.ones(
                (self.ann_info['num_joints'], 3), dtype=np.float)
            kpt_db.append({
                'image_file': img_name,
                'im_id': im_id,
                'center': center,
                'scale': scale,
                'score': score,
                'joints': joints,
                'joints_vis': joints_vis,
            })

        return kpt_db


@register
@serializable
class KeypointTopDownMPIIDataset(KeypointTopDownBaseDataset):
Z
zhiboniu 已提交
585 586 587
    """MPII dataset for topdown pose estimation. Adapted from
        https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
        Copyright (c) Microsoft, under the MIT License.
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

    The dataset loads raw features and apply specified transforms
    to return a dict containing the image tensors and other information.

    MPII keypoint indexes::

        0: 'right_ankle',
        1: 'right_knee',
        2: 'right_hip',
        3: 'left_hip',
        4: 'left_knee',
        5: 'left_ankle',
        6: 'pelvis',
        7: 'thorax',
        8: 'upper_neck',
        9: 'head_top',
        10: 'right_wrist',
        11: 'right_elbow',
        12: 'right_shoulder',
        13: 'left_shoulder',
        14: 'left_elbow',
        15: 'left_wrist',

    Args:
        dataset_dir (str): Root path to the dataset.
        image_dir (str): Path to a directory where images are held.
        anno_path (str): Relative path to the annotation file.
        num_joints (int): Keypoint numbers
        trainsize (list):[w, h] Image target size
        transform (composed(operators)): A sequence of data transforms.
    """

    def __init__(self,
                 dataset_dir,
                 image_dir,
                 anno_path,
                 num_joints,
                 transform=[]):
        super().__init__(dataset_dir, image_dir, anno_path, num_joints,
                         transform)

        self.dataset_name = 'mpii'

    def parse_dataset(self):
        with open(self.get_anno()) as anno_file:
            anno = json.load(anno_file)

        gt_db = []
        for a in anno:
            image_name = a['image']
            im_id = a['image_id'] if 'image_id' in a else int(
                os.path.splitext(image_name)[0])

            c = np.array(a['center'], dtype=np.float)
            s = np.array([a['scale'], a['scale']], dtype=np.float)

            # Adjust center/scale slightly to avoid cropping limbs
            if c[0] != -1:
                c[1] = c[1] + 15 * s[1]
                s = s * 1.25
            c = c - 1

            joints = np.zeros((self.ann_info['num_joints'], 3), dtype=np.float)
            joints_vis = np.zeros(
                (self.ann_info['num_joints'], 3), dtype=np.float)
            if 'joints' in a:
                joints_ = np.array(a['joints'])
                joints_[:, 0:2] = joints_[:, 0:2] - 1
                joints_vis_ = np.array(a['joints_vis'])
                assert len(joints_) == self.ann_info[
                    'num_joints'], 'joint num diff: {} vs {}'.format(
                        len(joints_), self.ann_info['num_joints'])

                joints[:, 0:2] = joints_[:, 0:2]
                joints_vis[:, 0] = joints_vis_[:]
                joints_vis[:, 1] = joints_vis_[:]

            gt_db.append({
                'image_file': os.path.join(self.img_prefix, image_name),
                'im_id': im_id,
                'center': c,
                'scale': s,
                'joints': joints,
                'joints_vis': joints_vis
            })
Z
zhiboniu 已提交
673
        print("number length: {}".format(len(gt_db)))
674
        self.db = gt_db